
4 Single Factor Experiments

To call in the statistician after the experiment is
done may be no more than asking him to perform
a post-mortem examination: he may be able to say
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Experiments in a nutshell

The primary goal of experiments is to identify causal relation-
ships between things in the world. Experiments do this by a
systematic process of measuring how things behave under dif-
ferent conditions.

People conduct informal experiments all of the time. For ex-
ample, when you walk into an unfamiliar room and want to
turn on a light, what do you do? You find the light switch
panel, and then you flip the switches until you find the one
that turns a particular light on or off. This process is called
trial and error, and involves trying things out until they work.
The process of figuring out which switch causes a particular
light to turn on or off is very similar to the process of conduct-
ing experiments. Let’s use the light-switch example to define
some important terms, and then discuss the logic of running
an experiment and making inferences about the data that is
collected in an experiment.

Experiments begin with a question about a potential causal re-
lationship between two variables. For example, which switch
on the panel caused light 1 to turn on? When you flick the
switches and look at the lights, you are actually accomplish-
ing three important parts of an experiment: manipulating the
independent variables, measuring the dependent variable, and
controlling extraneous variables.
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Figure 1: Which switch turns on which light?

2



The independent variable is the manipulation of different con-
ditions that a researcher controls. The light switches are inde-
pendent variables that can be manipulated. For example, the
first light switch can be up or down, the second light switch
can be up or down, and so on.

The dependent variable is the measurement of interest. Each
light bulb is a dependent variable that we can measure. For
example, we observe whether a light is on off, or perhaps use a
special photometer to measure the brightness of the light.

Figure 2: Possible outcomes of an experiment asking if Switch
1 controls Light 1

Let’s look at an experiment asking if light switch 1 causes the
first light to turn on or off. The experiment involves manipu-
lating switch 1 by turning it up or down, and then observing
whether the light turns on or off. There are two simple out-
comes. Possible outcome 1 is that the light stays off in both
conditions. What inference can we make based off of this pat-
tern of data? In most situations, people would be comfortable
with inferring that switch 1 does not cause Light 1 to turn on
and off. Possible outcome 2 is that the light turns on when
the switch is up, and turns off when the switch is down. What
inference can we make based off of this pattern of data? In
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most situations, people would be comfortable with inferring
that switch 1 does cause Light 1 to turn on and off.

It would be nice if the process of figuring out what causes what
is as simple as the light-switch example, but even this example
is not as simple as it seems. The biggest complication is the
inference part. We discussed two plausible inferences for out-
comes 1 and 2. However, these inferences might not be true.

For outcome 1 when the light doesn’t turn on, what could be
wrong about our inference that switch 1 does not control light
1? Perhaps that switch is wired up to control light 1, but the
light is broken; perhaps the wire got disconnected; or, perhaps
the light did turn on, but you couldn’t see it because the bright-
ness was very low.

For outcome 2 when the light does turn on, what could be
wrong about our inference that switch 1 does control light 1?
Here, we at least know that the light works, so we can be con-
fident in our measure of the dependent variable? But, how
confident our we that our manipulation of the light switch was
the only variable changing in our experiment? This depends
on how well the experiment controls extraneous or confounding
variables, that might be responsible for the light turning on or
off. If you can guarantee that the the only change was switch 1
going up and down, then you can be confident of the inference
that switch 1 caused light 1 to turn on and off.

Let’s consider a problematic version of the experiment where
you are not controlling other possible confounding variables.
For example, pretend that every time you test switch 1, a friend
is also testing a different switch. You turn switch 1 up, your
friend turns switch 2 up. You turn switch 1 down, your friend
turns switch 2 down. If the light turns on and off when the
switches go up and down, then what can you infer about light
switch 1? Well, switch 1 might control light 1, but so could
switch 2. The only way to infer that switch 1 was controlling
the light is to eliminate the influence of other possible variables.
So, you need to ask your friend to stop testing other switches
while you focus on testing switch 1.

To summarize, experiments attempt to discover the causal
forces between things in the world. Researchers manipulate
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the independent variable by systematically changing it across
different conditions. And, they measure the dependent
variable to see if it changes in any of the conditions. The
goal is to make inferences about whether the independent
variable causes change in the dependent variable. Generally,
when no change in the dependent variable is observed, we
infer that the independent variable does not causally influence
the dependent variable. But, this strong inference is only
valid when the experiment is designed properly so that the
researcher can guarantee that they 1) actually varied the
independent variable, and 2) the could actually measure
possible changes in the dependent variable without error.
When the dependent variable does show change across the
conditions of the independent variable, then we infer that the
independent variable causes change in the dependent variable.
But, this strong inference is only valid when the experiment
can guarantee that all extraneous or confounding variables
were held constant across the conditions of the independent
variable.

In psychological experiments, the goal of figuring out what
causes what is rarely accomplished by a single experiment. In-
stead, our inferences about causal relationships are strength-
ened over many experiments that improve our ability to mea-
sure variables of interest, and to create well-controlled condi-
tions where the independent variables are not confounded by
extraneous influences.

An example Psychology Experiment

In the late 1960s social psychologists John Darley and Bibb
Latané proposed a counter-intuitive hypothesis. The more wit-
nesses there are to an accident or a crime, the less likely any of
them is to help the victim (Darley and Latane 1968).

They also suggested the theory that this phenomenon occurs
because each witness feels less responsible for helping—a pro-
cess referred to as the “diffusion of responsibility.” Darley and
Latané noted that their ideas were consistent with many real-
world cases. For example, a New York woman named Cather-
ine “Kitty” Genovese was assaulted and murdered while several
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witnesses evidently failed to help. But Darley and Latané also
understood that such isolated cases did not provide convinc-
ing evidence for their hypothesized “bystander effect.” There
was no way to know, for example, whether any of the witnesses
to Kitty Genovese’s murder would have helped had there been
fewer of them.

So to test their hypothesis, Darley and Latané created a sim-
ulated emergency situation in a laboratory. Each of their uni-
versity student participants was isolated in a small room and
told that he or she would be having a discussion about uni-
versity life with other students via an intercom system. Early
in the discussion, however, one of the students began having
what seemed to be an epileptic seizure. Over the intercom
came the following: “I could really-er-use some help so if some-
body would-er-give me a little h-help-uh-er-er-er-er-er c-could
somebody-er- er-help-er-uh-uh-uh (choking sounds)…I’m gonna
die-er-er-I’m…gonna die-er-help-er-er-seizure-er- [chokes, then
quiet]” (Darley and Latane 1968).

In actuality, there were no other students. These comments
had been prerecorded and were played back to create the ap-
pearance of a real emergency. The key to the study was that
some participants were told that the discussion involved only
one other student (the victim), others were told that it involved
two other students, and still others were told that it included
five other students. Because this was the only difference be-
tween these three groups of participants, any difference in their
tendency to help the victim would have to have been caused
by it. And sure enough, the likelihood that the participant left
the room to seek help for the “victim” decreased from 85% to
62% to 31% as the number of “witnesses” increased.

The story of Kitty Genovese has been told and retold in numer-
ous psychology textbooks. The standard version is that there
were 38 witnesses to the crime, that all of them watched (or
listened) for an extended period of time, and that none of them
did anything to help. However, recent scholarship suggests
that the standard story is inaccurate in many ways (Manning,
Levine, and Collins 2007). For example, only six eyewitnesses
testified at the trial, none of them was aware that he or she was
witnessing a lethal assault, and there have been several reports

6



of witnesses calling the police or even coming to the aid of Kitty
Genovese. Although the standard story inspired a long line of
research on the bystander effect and the diffusion of respon-
sibility, it may also have directed researchers’ and students’
attention away from other equally interesting and important
issues in the psychology of helping—including the conditions
in which people do in fact respond collectively to emergency
situations.

The research that Darley and Latané conducted was a par-
ticular kind of study called an experiment. Experiments are
used to determine not only whether there is a meaningful rela-
tionship between two variables but also whether the relation-
ship is a causal one that is supported by statistical analysis.
For this reason, experiments are one of the most common and
useful tools in the psychological researcher’s toolbox. In this
chapter, we look at experiments in detail. We will first con-
sider what sets experiments apart from other kinds of studies
and why they support causal conclusions while other kinds of
studies do not. We then look at two basic ways of designing
an experiment—between-subjects designs and within-subjects
designs—and discuss their pros and cons. Finally, we consider
several important practical issues that arise when conducting
experiments.

More Experimental Basics

Learning Objectives

1. Explain what an experiment
is and recognize examples of
studies that are experiments
and studies that are not
experiments.

2. Explain what internal validity
is and why experiments are
considered to be high in
internal validity.

3. Explain what external
validity is and evaluate
studies in terms of their
external validity.

4. Distinguish between the
manipulation of the
independent variable and
control of extraneous
variables and explain the
importance of each.

5. Recognize examples of
confounding variables and
explain how they affect the
internal validity of a study.

What Is an Experiment?

As we saw earlier in the book, an experiment is a type of study
designed specifically to answer the question of whether there
is a causal relationship between two variables. In other words,
whether changes in an independent variable cause changes in
a dependent variable. Experiments have two fundamental fea-
tures. The first is that the researchers manipulate, or systemat-
ically vary, the level of the independent variable. The different
levels of the independent variable are called conditions. For
example, in Darley and Latané’s experiment, the independent
variable was the number of witnesses that participants believed
to be present. The researchers manipulated this independent
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variable by telling participants that there were either one, two,
or five other students involved in the discussion, thereby creat-
ing three conditions. For a new researcher, it is easy to confuse
these terms by believing there are three independent variables
in this situation: one, two, or five students involved in the
discussion, but there is actually only one independent variable
(number of witnesses) with three different conditions (one, two
or five students). The second fundamental feature of an ex-
periment is that the researcher controls, or minimizes the vari-
ability in, variables other than the independent and dependent
variable. These other variables are called extraneous variables.
Darley and Latané tested all their participants in the same
room, exposed them to the same emergency situation, and so
on. They also randomly assigned their participants to condi-
tions so that the three groups would be similar to each other to
begin with. Notice that although the words manipulation and
control have similar meanings in everyday language, researchers
make a clear distinction between them. They manipulate the
independent variable by systematically changing its levels and
control other variables by holding them constant.

Four Big Validities

When we read about psychology experiments with a critical
view, one question to ask is “is this study valid?” However,
that question is not as straightforward as it seems because in
psychology, there are many different kinds of validities. Re-
searchers have focused on four validities to help assess whether
an experiment is sound (Kenny and Judd 1981; Morling 2014):
internal validity, external validity, construct validity, and sta-
tistical validity. We will explore each validity in depth.

Internal Validity

Recall that two variables being statistically related does not
necessarily mean that one causes the other. “Correlation does
not imply causation.” For example, if it were the case that
people who exercise regularly are happier than people who do
not exercise regularly, this implication would not necessarily
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mean that exercising increases people’s happiness. It could
mean instead that greater happiness causes people to exercise
(the directionality problem) or that something like better phys-
ical health causes people to exercise and be happier (the third-
variable problem).

The purpose of an experiment, however, is to show that two
variables are statistically related and to do so in a way that
supports the conclusion that the independent variable caused
any observed differences in the dependent variable. The logic
is based on this assumption : If the researcher creates two or
more highly similar conditions and then manipulates the inde-
pendent variable to produce just one difference between them,
then any later difference between the conditions must have been
caused by the independent variable. For example, because the
only difference between Darley and Latané’s conditions was the
number of students that participants believed to be involved in
the discussion, this difference in belief must have been respon-
sible for differences in helping between the conditions.

An empirical study is said to be high in internal validity if the
way it was conducted supports the conclusion that the indepen-
dent variable caused any observed differences in the dependent
variable. Thus experiments are high in internal validity because
the way they are conducted—with the manipulation of the in-
dependent variable and the control of extraneous variables—
provides strong support for causal conclusions.

External Validity

At the same time, the way that experiments are conducted
sometimes leads to a different kind of criticism. Specifically,
the need to manipulate the independent variable and control
extraneous variables means that experiments are often con-
ducted under conditions that seem artificial (Bauman et al.
2014). In many psychology experiments, the participants are
all undergraduate students and come to a classroom or labora-
tory to fill out a series of paper-and-pencil questionnaires or to
perform a carefully designed computerized task. Consider, for
example, an experiment in which researcher Barbara Fredrick-
son and her colleagues had undergraduate students come to a
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laboratory on campus and complete a math test while wearing
a swimsuit (Fredrickson et al. 1998). At first, this manipula-
tion might seem silly. When will undergraduate students ever
have to complete math tests in their swimsuits outside of this
experiment?

The issue we are confronting is that of external validity. An
empirical study is high in external validity if the way it was
conducted supports generalizing the results to people and situ-
ations beyond those actually studied. As a general rule, stud-
ies are higher in external validity when the participants and
the situation studied are similar to those that the researchers
want to generalize to and participants encounter everyday, of-
ten described as mundane realism. Imagine, for example, that a
group of researchers is interested in how shoppers in large gro-
cery stores are affected by whether breakfast cereal is packaged
in yellow or purple boxes. Their study would be high in exter-
nal validity and have high mundane realism if they studied the
decisions of ordinary people doing their weekly shopping in a
real grocery store. If the shoppers bought much more cereal in
purple boxes, the researchers would be fairly confident that this
increase would be true for other shoppers in other stores. Their
study would be relatively low in external validity, however, if
they studied a sample of undergraduate students in a laboratory
at a selective university who merely judged the appeal of vari-
ous colors presented on a computer screen; however, this study
would have high psychological realism where the same mental
process is used in both the laboratory and in the real world. If
the students judged purple to be more appealing than yellow,
the researchers would not be very confident that this preference
is relevant to grocery shoppers’ cereal-buying decisions because
of low external validity but they could be confident that the
visual processing of colors has high psychological realism.

We should be careful, however, not to draw the blanket conclu-
sion that experiments are low in external validity. One reason is
that experiments need not seem artificial. Consider that Darley
and Latané’s experiment provided a reasonably good simula-
tion of a real emergency situation. Or consider-field experi-
ments that are conducted entirely outside the laboratory. In
one such experiment, Robert Cialdini and his colleagues studied
whether hotel guests choose to reuse their towels for a second
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day as opposed to having them washed as a way of conserving
water and energy (Cialdini 2005). These researchers manipu-
lated the message on a card left in a large sample of hotel rooms.
One version of the message emphasized showing respect for the
environment, another emphasized that the hotel would donate
a portion of their savings to an environmental cause, and a
third emphasized that most hotel guests choose to reuse their
towels. The result was that guests who received the message
that most hotel guests choose to reuse their towels reused their
own towels substantially more often than guests receiving ei-
ther of the other two messages. Given the way they conducted
their study, it seems very likely that their result would hold
true for other guests in other hotels.

A second reason not to draw the blanket conclusion that exper-
iments are low in external validity is that they are often con-
ducted to learn about psychological processes that are likely to
operate in a variety of people and situations. Let us return to
the experiment by Fredrickson and colleagues. They found that
the women in their study, but not the men, performed worse on
the math test when they were wearing swimsuits. They argued
that this gender difference was due to women’s greater ten-
dency to objectify themselves—to think about themselves from
the perspective of an outside observer—which diverts their at-
tention away from other tasks. They argued, furthermore, that
this process of self-objectification and its effect on attention is
likely to operate in a variety of women and situations—even
if none of them ever finds herself taking a math test in her
swimsuit.

Construct Validity

In addition to the generalizability of the results of an experi-
ment, another element to scrutinize in a study is the quality
of the experiment’s manipulations, or the construct validity.
The research question that Darley and Latané started with is
“does helping behavior become diffused?” They hypothesized
that participants in a lab would be less likely to help when they
believed there were more potential helpers besides themselves.
This conversion from research question to experiment design is
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called operationalization (see Chapter 2 for more information
about the operational definition). Darley and Latané opera-
tionalized the independent variable of diffusion of responsibil-
ity by increasing the number of potential helpers. In evaluating
this design, we would say that the construct validity was very
high because the experiment’s manipulations very clearly speak
to the research question; there was a crisis, a way for the par-
ticipant to help, and increasing the number of other students
involved in the discussion, they provided a way to test diffu-
sion.

What if the number of conditions in Darley and Latané’s study
changed? Consider if there were only two conditions: one stu-
dent involved in the discussion or two. Even though we may
see a decrease in helping by adding another person, it may
not be a clear demonstration of diffusion of responsibility, just
merely the presence of others. We might think it was a form of
Bandura’s social inhibition (discussed in Chapter 4). The con-
struct validity would be lower. However, had there been five
conditions, perhaps we would see the decrease continue with
more people in the discussion or perhaps it would plateau af-
ter a certain number of people. In that situation, we may not
necessarily be learning more about diffusion of responsibility
or it may become a different phenomenon. By adding more
conditions, the construct validity may not get higher. When
designing your own experiment, consider how well the research
question is operationalized your study.

Statistical Validity

A common critique of experiments is that a study did not have
enough participants. The main reason for this criticism is that
it is difficult to generalize about a population from a small
sample. At the outset, it seems as though this critique is about
external validity but there are studies where small sample sizes
are not a problem (Chapter 11 will discuss how small samples,
even of only 1 person, are still very illuminating for psychology
research). Therefore, small sample sizes are actually a critique
of statistical validity. The statistical validity speaks to whether
the statistics conducted in the study support the conclusions
that are made.
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Proper statistical analysis should be conducted on the data
to determine whether the difference or relationship that was
predicted was found. The number of conditions and the number
of total participants will determine the overall size of the effect.
With this information, a power analysis can be conducted to
ascertain whether you are likely to find a real difference. When
designing a study, it is best to think about the power analysis so
that the appropriate number of participants can be recruited
and tested (more on effect sizes in Chapter 12). To design
a statistically valid experiment, thinking about the statistical
tests at the beginning of the design will help ensure the results
can be believed.

Prioritizing Validities

These four big validities–internal, external, construct, and
statistical–are useful to keep in mind when both reading
about other experiments and designing your own. However,
researchers must prioritize and often it is not possible to
have high validity in all four areas. In Cialdini’s study on
towel usage in hotels, the external validity was high but the
statistical validity was more modest. This discrepancy does
not invalidate the study but it shows where there may be
room for improvement for future follow-up studies (Goldstein,
Cialdini, and Griskevicius 2008). Morling (2014) points out
that most psychology studies have high internal and construct
validity but sometimes sacrifice external validity.

Manipulation of the Independent Variable

Again, to manipulate an independent variable means to change
its level systematically so that different groups of participants
are exposed to different levels of that variable, or the same
group of participants is exposed to different levels at different
times. For example, to see whether expressive writing affects
people’s health, a researcher might instruct some participants
to write about traumatic experiences and others to write about
neutral experiences. As discussed earlier in this chapter, the
different levels of the independent variable are referred to as
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conditions, and researchers often give the conditions short de-
scriptive names to make it easy to talk and write about them.
In this case, the conditions might be called the “traumatic con-
dition” and the “neutral condition.”

Notice that the manipulation of an independent variable must
involve the active intervention of the researcher. Comparing
groups of people who differ on the independent variable before
the study begins is not the same as manipulating that vari-
able. For example, a researcher who compares the health of
people who already keep a journal with the health of people
who do not keep a journal has not manipulated this variable
and therefore not conducted an experiment. This distinction
is important because groups that already differ in one way at
the beginning of a study are likely to differ in other ways too.
For example, people who choose to keep journals might also
be more conscientious, more introverted, or less stressed than
people who do not. Therefore, any observed difference between
the two groups in terms of their health might have been caused
by whether or not they keep a journal, or it might have been
caused by any of the other differences between people who do
and do not keep journals. Thus the active manipulation of the
independent variable is crucial for eliminating the third-variable
problem.

Of course, there are many situations in which the indepen-
dent variable cannot be manipulated for practical or ethical
reasons and therefore an experiment is not possible. For exam-
ple, whether or not people have a significant early illness expe-
rience cannot be manipulated, making it impossible to conduct
an experiment on the effect of early illness experiences on the
development of hypochondriasis. This caveat does not mean
it is impossible to study the relationship between early illness
experiences and hypochondriasis—only that it must be done
using nonexperimental approaches. We will discuss this type
of methodology in detail later in the book.

In many experiments, the independent variable is a construct
that can only be manipulated indirectly. For example, a re-
searcher might try to manipulate participants’ stress levels in-
directly by telling some of them that they have five minutes
to prepare a short speech that they will then have to give
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to an audience of other participants. In such situations, re-
searchers often include a manipulation check in their proce-
dure. A manipulation check is a separate measure of the con-
struct the researcher is trying to manipulate. For example, re-
searchers trying to manipulate participants’ stress levels might
give them a paper-and-pencil stress questionnaire or take their
blood pressure—perhaps right after the manipulation or at the
end of the procedure—to verify that they successfully manipu-
lated this variable.

Control of Extraneous Variables

As we have seen previously in the chapter, an extraneous vari-
able is anything that varies in the context of a study other than
the independent and dependent variables. In an experiment on
the effect of expressive writing on health, for example, extra-
neous variables would include participant variables (individual
differences) such as their writing ability, their diet, and their
shoe size. They would also include situational or task vari-
ables such as the time of day when participants write, whether
they write by hand or on a computer, and the weather. Ex-
traneous variables pose a problem because many of them are
likely to have some effect on the dependent variable. For exam-
ple, participants’ health will be affected by many things other
than whether or not they engage in expressive writing. This
influencing factor can make it difficult to separate the effect
of the independent variable from the effects of the extraneous
variables, which is why it is important to control extraneous
variables by holding them constant.

Extraneous Variables as Noise

Extraneous variables make it difficult to detect the effect of
the independent variable in two ways. One is by adding vari-
ability or “noise” to the data. Imagine a simple experiment
on the effect of mood (happy vs. sad) on the number of happy
childhood events people are able to recall. Participants are put
into a negative or positive mood (by showing them a happy or
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sad video clip) and then asked to recall as many happy child-
hood events as they can. The two leftmost columns of Figure
Figure 3 show what the data might look like if there were no
extraneous variables and the number of happy childhood events
participants recalled was affected only by their moods. Every
participant in the happy mood condition recalled exactly four
happy childhood events, and every participant in the sad mood
condition recalled exactly three. The effect of mood here is
quite obvious. In reality, however, the data would probably
look more like those in the two rightmost columns of Figure
Figure 3. Even in the happy mood condition, some partici-
pants would recall fewer happy memories because they have
fewer to draw on, use less effective recall strategies, or are less
motivated. And even in the sad mood condition, some partic-
ipants would recall more happy childhood memories because
they have more happy memories to draw on, they use more ef-
fective recall strategies, or they are more motivated. Although
the mean difference between the two groups is the same as in
the idealized data, this difference is much less obvious in the
context of the greater variability in the data. Thus one reason
researchers try to control extraneous variables is so their data
look more like the idealized data in Figure Figure 3, which
makes the effect of the independent variable easier to detect
(although real data never look quite that good).

One way to control extraneous variables is to hold them con-
stant. This technique can mean holding situation or task vari-
ables constant by testing all participants in the same location,
giving them identical instructions, treating them in the same
way, and so on. It can also mean holding participant vari-
ables constant. For example, many studies of language limit
participants to right-handed people, who generally have their
language areas isolated in their left cerebral hemispheres. Left-
handed people are more likely to have their language areas iso-
lated in their right cerebral hemispheres or distributed across
both hemispheres, which can change the way they process lan-
guage and thereby add noise to the data.

In principle, researchers can control extraneous variables by
limiting participants to one very specific category of person,
such as 20-year-old, heterosexual, female, right-handed psy-
chology majors. The obvious downside to this approach is that
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Figure 3: Hypothetical Noiseless Data and Realistic Noisy Data
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it would lower the external validity of the study—in particu-
lar, the extent to which the results can be generalized beyond
the people actually studied. For example, it might be unclear
whether results obtained with a sample of younger heterosex-
ual women would apply to older homosexual men. In many
situations, the advantages of a diverse sample outweigh the re-
duction in noise achieved by a homogeneous one.

Extraneous Variables as Confounding Variables

The second way that extraneous variables can make it difficult
to detect the effect of the independent variable is by becoming
confounding variables. A confounding variable is an extraneous
variable that differs on average across levels of the independent
variable. For example, in almost all experiments, participants’
intelligence quotients (IQs) will be an extraneous variable. But
as long as there are participants with lower and higher IQs at
each level of the independent variable so that the average IQ is
roughly equal, then this variation is probably acceptable (and
may even be desirable). What would be bad, however, would be
for participants at one level of the independent variable to have
substantially lower IQs on average and participants at another
level to have substantially higher IQs on average. In this case,
IQ would be a confounding variable.

Figure 4: Hypothetical Results From a Study on the Effect of
Mood on Memory. Because IQ also differs across con-
ditions, it is a confounding variable
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To confound means to confuse, and this effect is exactly why
confounding variables are undesirable. Because they differ
across conditions—just like the independent variable—they
provide an alternative explanation for any observed difference
in the dependent variable. Figure Figure 4 shows the results of
a hypothetical study, in which participants in a positive mood
condition scored higher on a memory task than participants
in a negative mood condition. But if IQ is a confounding
variable—with participants in the positive mood condition
having higher IQs on average than participants in the negative
mood condition—then it is unclear whether it was the positive
moods or the higher IQs that caused participants in the first
condition to score higher. One way to avoid confounding
variables is by holding extraneous variables constant. For
example, one could prevent IQ from becoming a confounding
variable by limiting participants only to those with IQs of
exactly 100. But this approach is not always desirable for
reasons we have already discussed. A second and much more
general approach—random assignment to conditions—will be
discussed in detail shortly.

Key Takeaways

• An experiment is a type of empirical study that features
the manipulation of an independent variable, the mea-
surement of a dependent variable, and control of extra-
neous variables.

• Studies are high in internal validity to the extent that the
way they are conducted supports the conclusion that the
independent variable caused any observed differences in
the dependent variable. Experiments are generally high
in internal validity because of the manipulation of the
independent variable and control of extraneous variables.

• Studies are high in external validity to the extent that
the result can be generalized to people and situations be-
yond those actually studied. Although experiments can
seem “artificial”—and low in external validity—it is im-
portant to consider whether the psychological processes
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under study are likely to operate in other people and sit-
uations.

Exercises

1. Practice: List five variables that can be manipulated by
the researcher in an experiment. List five variables that
cannot be manipulated by the researcher in an experi-
ment.

2. Practice: For each of the following topics, decide whether
that topic could be studied using an experimental re-
search design and explain why or why not.

• Effect of parietal lobe damage on people’s ability to
do basic arithmetic.

• Effect of being clinically depressed on the number of
close friendships people have.

• Effect of group training on the social skills of
teenagers with Asperger’s syndrome.

• Effect of paying people to take an IQ test on their
performance on that test.

Experimental Design

Learning Objectives

1. Explain the difference
between between-subjects and
within-subjects experiments,
list some of the pros and cons
of each approach, and decide
which approach to use to
answer a particular research
question.

2. Define random assignment,
distinguish it from random
sampling, explain its purpose
in experimental research, and
use some simple strategies to
implement it.

3. Define what a control
condition is, explain its
purpose in research on
treatment effectiveness, and
describe some alternative
types of control conditions.

4. Define several types of
carryover effect, give
examples of each, and explain
how counterbalancing helps
to deal with them.

In this section, we look at some different ways to design an
experiment. The primary distinction we will make is between
approaches in which each participant experiences one level of
the independent variable and approaches in which each partic-
ipant experiences all levels of the independent variable. The
former are called between-subjects experiments and the latter
are called within-subjects experiments.
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Between-Subjects Experiments

In a between-subjects experiment, each participant is tested in
only one condition. For example, a researcher with a sample
of 100 university students might assign half of them to write
about a traumatic event and the other half write about a neu-
tral event. Or a researcher with a sample of 60 people with
severe agoraphobia (fear of open spaces) might assign 20 of
them to receive each of three different treatments for that dis-
order. It is essential in a between- subjects experiment that the
researcher assign participants to conditions so that the differ-
ent groups are, on average, highly similar to each other. Those
in a trauma condition and a neutral condition, for example,
should include a similar proportion of men and women, and
they should have similar average intelligence quotients (IQs),
similar average levels of motivation, similar average numbers of
health problems, and so on. This matching is a matter of con-
trolling these extraneous participant variables across conditions
so that they do not become confounding variables.

Random Assignment

The primary way that researchers accomplish this kind of con-
trol of extraneous variables across conditions is called random
assignment, which means using a random process to decide
which participants are tested in which conditions. Do not con-
fuse random assignment with random sampling. Random sam-
pling is a method for selecting a sample from a population,
and it is rarely used in psychological research. Random as-
signment is a method for assigning participants in a sample to
the different conditions, and it is an important element of all
experimental research in psychology and other fields too.

In its strictest sense, random assignment should meet two cri-
teria. One is that each participant has an equal chance of being
assigned to each condition (e.g., a 50% chance of being assigned
to each of two conditions). The second is that each participant
is assigned to a condition independently of other participants.
Thus one way to assign participants to two conditions would
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be to flip a coin for each one. If the coin lands heads, the par-
ticipant is assigned to Condition A, and if it lands tails, the
participant is assigned to Condition B. For three conditions,
one could use a computer to generate a random integer from 1
to 3 for each participant. If the integer is 1, the participant is
assigned to Condition A; if it is 2, the participant is assigned
to Condition B; and if it is 3, the participant is assigned to
Condition C. In practice, a full sequence of conditions—one for
each participant expected to be in the experiment—is usually
created ahead of time, and each new participant is assigned
to the next condition in the sequence as he or she is tested.
When the procedure is computerized, the computer program
often handles the random assignment.

One problem with coin flipping and other strict procedures for
random assignment is that they are likely to result in unequal
sample sizes in the different conditions. Unequal sample sizes
are generally not a serious problem, and you should never throw
away data you have already collected to achieve equal sample
sizes. However, for a fixed number of participants, it is statisti-
cally most efficient to divide them into equal-sized groups. It is
standard practice, therefore, to use a kind of modified random
assignment that keeps the number of participants in each group
as similar as possible. One approach is block randomization.
In block randomization, all the conditions occur once in the
sequence before any of them is repeated. Then they all occur
again before any of them is repeated again. Within each of
these “blocks,” the conditions occur in a random order. Again,
the sequence of conditions is usually generated before any par-
ticipants are tested, and each new participant is assigned to
the next condition in the sequence. Figure Figure 5 shows such
a sequence for assigning nine participants to three conditions.
The Research Randomizer website http://www.randomizer.org
will generate block randomization sequences for any number
of participants and conditions. Again, when the procedure is
computerized, the computer program often handles the block
randomization.

Random assignment is not guaranteed to control all extrane-
ous variables across conditions. It is always possible that just
by chance, the participants in one condition might turn out to
be substantially older, less tired, more motivated, or less de-
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Figure 5: Block Randomization Sequence for Assigning Nine
Participants to Three Conditions
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pressed on average than the participants in another condition.
However, there are some reasons that this possibility is not a
major concern. One is that random assignment works better
than one might expect, especially for large samples. Another
is that the inferential statistics that researchers use to decide
whether a difference between groups reflects a difference in the
population takes the “fallibility” of random assignment into ac-
count. Yet another reason is that even if random assignment
does result in a confounding variable and therefore produces
misleading results, this confound is likely to be detected when
the experiment is replicated. The upshot is that random assign-
ment to conditions—although not infallible in terms of control-
ling extraneous variables—is always considered a strength of a
research design.

Treatment and Control Conditions

Between-subjects experiments are often used to determine
whether a treatment works. In psychological research, a treat-
ment is any intervention meant to change people’s behavior
for the better. This intervention includes psychotherapies
and medical treatments for psychological disorders but also
interventions designed to improve learning, promote conser-
vation, reduce prejudice, and so on. To determine whether a
treatment works, participants are randomly assigned to either
a treatment condition, in which they receive the treatment, or
a control condition, in which they do not receive the treatment.
If participants in the treatment condition end up better off
than participants in the control condition—for example, they
are less depressed, learn faster, conserve more, express less
prejudice—then the researcher can conclude that the treatment
works. In research on the effectiveness of psychotherapies and
medical treatments, this type of experiment is often called a
randomized clinical trial.

There are different types of control conditions. In a no-
treatment control condition, participants receive no treatment
whatsoever. One problem with this approach, however, is the
existence of placebo effects. A placebo is a simulated treatment
that lacks any active ingredient or element that should make
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it effective, and a placebo effect is a positive effect of such a
treatment. Many folk remedies that seem to work—such as
eating chicken soup for a cold or placing soap under the bed
sheets to stop nighttime leg cramps—are probably nothing
more than placebos. Although placebo effects are not well
understood, they are probably driven primarily by people’s
expectations that they will improve. Having the expectation to
improve can result in reduced stress, anxiety, and depression,
which can alter perceptions and even improve immune system
functioning (Price, Finniss, and Benedetti 2008).

Placebo effects are interesting in their own right (see Note “The
Powerful Placebo”), but they also pose a serious problem for
researchers who want to determine whether a treatment works.
Figure Figure 6 shows some hypothetical results in which par-
ticipants in a treatment condition improved more on average
than participants in a no-treatment control condition. If these
conditions –the two leftmost bars in Figure Figure 6 – were the
only conditions in this experiment, however, one could not con-
clude that the treatment worked. It could be instead that par-
ticipants in the treatment group improved more because they
expected to improve, while those in the no-treatment control
condition did not.

Fortunately, there are several solutions to this problem. One
is to include a placebo control condition, in which participants
receive a placebo that looks much like the treatment but lacks
the active ingredient or element thought to be responsible for
the treatment’s effectiveness. When participants in a treatment
condition take a pill, for example, then those in a placebo con-
trol condition would take an identical-looking pill that lacks the
active ingredient in the treatment (a “sugar pill”). In research
on psychotherapy effectiveness, the placebo might involve go-
ing to a psychotherapist and talking in an unstructured way
about one’s problems. The idea is that if participants in both
the treatment and the placebo control groups expect to im-
prove, then any improvement in the treatment group over and
above that in the placebo control group must have been caused
by the treatment and not by participants’ expectations. This
difference is what is shown by a comparison of the two outer
bars in Figure Figure 6.
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Figure 6: Hypothetical Results From a Study Including Treat-
ment, No-Treatment, and Placebo Conditions

Of course, the principle of informed consent requires that par-
ticipants be told that they will be assigned to either a treat-
ment or a placebo control condition—even though they cannot
be told which until the experiment ends. In many cases the
participants who had been in the control condition are then
offered an opportunity to have the real treatment. An alterna-
tive approach is to use a wait-list control condition, in which
participants are told that they will receive the treatment but
must wait until the participants in the treatment condition have
already received it. This disclosure allows researchers to com-
pare participants who have received the treatment with partic-
ipants who are not currently receiving it but who still expect
to improve (eventually). A final solution to the problem of
placebo effects is to leave out the control condition completely
and compare any new treatment with the best available alterna-
tive treatment. For example, a new treatment for simple phobia
could be compared with standard exposure therapy. Because
participants in both conditions receive a treatment, their expec-
tations about improvement should be similar. This approach
also makes sense because once there is an effective treatment,
the interesting question about a new treatment is not simply
“Does it work?” but “Does it work better than what is already
available?

Many people are not surprised that placebos can have a posi-
tive effect on disorders that seem fundamentally psychological,
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including depression, anxiety, and insomnia. However, place-
bos can also have a positive effect on disorders that most people
think of as fundamentally physiological. These include asthma,
ulcers, and warts (Shapiro and Shapiro 2000). There is even ev-
idence that placebo surgery—also called “sham surgery”—can
be as effective as actual surgery.

Medical researcher J. Bruce Moseley and his colleagues con-
ducted a study on the effectiveness of two arthroscopic surgery
procedures for osteoarthritis of the knee (Moseley et al. 2002).
The control participants in this study were prepped for surgery,
received a tranquilizer, and even received three small incisions
in their knees. But they did not receive the actual arthro-
scopic surgical procedure. The surprising result was that all
participants improved in terms of both knee pain and func-
tion, and the sham surgery group improved just as much as the
treatment groups. According to the researchers, “This study
provides strong evidence that arthroscopic lavage with or with-
out débridement [the surgical procedures used] is not better
than and appears to be equivalent to a placebo procedure in
improving knee pain and self-reported function” (p. 85).

Within-Subjects Experiments

In a within-subjects experiment, each participant is tested un-
der all conditions. Consider an experiment on the effect of a
defendant’s physical attractiveness on judgments of his guilt.
Again, in a between-subjects experiment, one group of partic-
ipants would be shown an attractive defendant and asked to
judge his guilt, and another group of participants would be
shown an unattractive defendant and asked to judge his guilt.
In a within-subjects experiment, however, the same group of
participants would judge the guilt of both an attractive and an
unattractive defendant.

The primary advantage of this approach is that it provides max-
imum control of extraneous participant variables. Participants
in all conditions have the same mean IQ, same socioeconomic
status, same number of siblings, and so on—because they are
the very same people. Within-subjects experiments also make
it possible to use statistical procedures that remove the effect of
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these extraneous participant variables on the dependent vari-
able and therefore make the data less “noisy” and the effect of
the independent variable easier to detect. We will look more
closely at this idea later in the book. However, not all experi-
ments can use a within-subjects design nor would it be desirable
to.

Carryover Effects and Counterbalancing

The primary disadvantage of within-subjects designs is that
they can result in carryover effects. A carryover effect is an ef-
fect of being tested in one condition on participants’ behavior
in later conditions. One type of carryover effect is a practice
effect, where participants perform a task better in later condi-
tions because they have had a chance to practice it. Another
type is a fatigue effect, where participants perform a task worse
in later conditions because they become tired or bored. Being
tested in one condition can also change how participants per-
ceive stimuli or interpret their task in later conditions. This
type of effect is called a context effect. For example, an average-
looking defendant might be judged more harshly when partici-
pants have just judged an attractive defendant than when they
have just judged an unattractive defendant. Within-subjects
experiments also make it easier for participants to guess the
hypothesis. For example, a participant who is asked to judge
the guilt of an attractive defendant and then is asked to judge
the guilt of an unattractive defendant is likely to guess that the
hypothesis is that defendant attractiveness affects judgments of
guilt. This knowledge could lead the participant to judge the
unattractive defendant more harshly because he thinks this is
what he is expected to do. Or it could make participants judge
the two defendants similarly in an effort to be “fair.”

Carryover effects can be interesting in their own right. (Does
the attractiveness of one person depend on the attractiveness
of other people that we have seen recently?) But when they are
not the focus of the research, carryover effects can be problem-
atic. Imagine, for example, that participants judge the guilt of
an attractive defendant and then judge the guilt of an unattrac-
tive defendant. If they judge the unattractive defendant more
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harshly, this might be because of his unattractiveness. But it
could be instead that they judge him more harshly because they
are becoming bored or tired. In other words, the order of the
conditions is a confounding variable. The attractive condition
is always the first condition and the unattractive condition the
second. Thus any difference between the conditions in terms
of the dependent variable could be caused by the order of the
conditions and not the independent variable itself.

There is a solution to the problem of order effects, however,
that can be used in many situations. It is counterbalancing,
which means testing different participants in different orders.
For example, some participants would be tested in the attrac-
tive defendant condition followed by the unattractive defendant
condition, and others would be tested in the unattractive con-
dition followed by the attractive condition. With three con-
ditions, there would be six different orders (ABC, ACB, BAC,
BCA, CAB, and CBA), so some participants would be tested in
each of the six orders. With counterbalancing, participants are
assigned to orders randomly, using the techniques we have al-
ready discussed. Thus random assignment plays an important
role in within-subjects designs just as in between- subjects de-
signs. Here, instead of randomly assigning to conditions, they
are randomly assigned to different orders of conditions. In fact,
it can safely be said that if a study does not involve random
assignment in one form or another, it is not an experiment.

An efficient way of counterbalancing is through a Latin
square design which randomizes through having equal rows
and columns. For example, if you have four treatments, you
must have four versions. Like a Sudoku puzzle, no treatment
can repeat in a row or column. For four versions of four
treatments, the Latin square design would look like the table
to the right.

There are two ways to think about what counterbalancing ac-
complishes. One is that it controls the order of conditions so
that it is no longer a confounding variable. Instead of the at-
tractive condition always being first and the unattractive con-
dition always being second, the attractive condition comes first
for some participants and second for others. Likewise, the
unattractive condition comes first for some participants and
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Figure 7: Latin Square for four variables

second for others. Thus any overall difference in the dependent
variable between the two conditions cannot have been caused
by the order of conditions. A second way to think about what
counterbalancing accomplishes is that if there are carryover ef-
fects, it makes it possible to detect them. One can analyze the
data separately for each order to see whether it had an effect.

Researcher Michael Birnbaum has argued that the lack of con-
text provided by between-subjects designs is often a bigger
problem than the context effects created by within-subjects de-
signs. To demonstrate this problem, he asked participants to
rate two numbers on how large they were on a scale of 1-to-10
where 1 was “very very small” and 10 was “very very large”.
One group of participants were asked to rate the number 9 and
another group was asked to rate the number 221 (Birnbaum
1999). Participants in this between-subjects design gave the
number 9 a mean rating of 5.13 and the number 221 a mean
rating of 3.10. In other words, they rated 9 as larger than 221!
According to Birnbaum, this difference is because participants
spontaneously compared 9 with other one-digit numbers (in
which case it is relatively large) and compared 221 with other
three-digit numbers (in which case it is relatively small).
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Simultaneous Within-Subjects Designs

So far, we have discussed an approach to within-subjects de-
signs in which participants are tested in one condition at a
time. There is another approach, however, that is often used
when participants make multiple responses in each condition.
Imagine, for example, that participants judge the guilt of 10
attractive defendants and 10 unattractive defendants. Instead
of having people make judgments about all 10 defendants of
one type followed by all 10 defendants of the other type, the
researcher could present all 20 defendants in a sequence that
mixed the two types. The researcher could then compute each
participant’s mean rating for each type of defendant. Or imag-
ine an experiment designed to see whether people with social
anxiety disorder remember negative adjectives (e.g., “stupid,”
“incompetent”) better than positive ones (e.g., “happy,” “pro-
ductive”). The researcher could have participants study a single
list that includes both kinds of words and then have them try
to recall as many words as possible. The researcher could then
count the number of each type of word that was recalled. There
are many ways to determine the order in which the stimuli are
presented, but one common way is to generate a different ran-
dom order for each participant.

Between-Subjects or Within-Subjects?

Almost every experiment can be conducted using either a
between-subjects design or a within-subjects design. This
possibility means that researchers must choose between the
two approaches based on their relative merits for the particular
situation.

Between-subjects experiments have the advantage of being con-
ceptually simpler and requiring less testing time per partici-
pant. They also avoid carryover effects without the need for
counterbalancing. Within-subjects experiments have the ad-
vantage of controlling extraneous participant variables, which
generally reduces noise in the data and makes it easier to detect
a relationship between the independent and dependent vari-
ables.
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A good rule of thumb, then, is that if it is possible to conduct
a within-subjects experiment (with proper counterbalancing)
in the time that is available per participant—and you have no
serious concerns about carryover effects—this design is proba-
bly the best option. If a within-subjects design would be dif-
ficult or impossible to carry out, then you should consider a
between-subjects design instead. For example, if you were test-
ing participants in a doctor’s waiting room or shoppers in line
at a grocery store, you might not have enough time to test
each participant in all conditions and therefore would opt for a
between-subjects design. Or imagine you were trying to reduce
people’s level of prejudice by having them interact with some-
one of another race. A within-subjects design with counterbal-
ancing would require testing some participants in the treatment
condition first and then in a control condition. But if the treat-
ment works and reduces people’s level of prejudice, then they
would no longer be suitable for testing in the control condi-
tion. This difficulty is true for many designs that involve a
treatment meant to produce long-term change in participants’
behavior (e.g., studies testing the effectiveness of psychother-
apy). Clearly, a between-subjects design would be necessary
here.

Remember also that using one type of design does not preclude
using the other type in a different study. There is no reason that
a researcher could not use both a between-subjects design and
a within-subjects design to answer the same research question.
In fact, professional researchers often take exactly this type of
mixed methods approach.

Key Takeaways

• Experiments can be conducted using either between-
subjects or within-subjects designs. Deciding which to
use in a particular situation requires careful consideration
of the pros and cons of each approach.

• Random assignment to conditions in between-subjects ex-
periments or to orders of conditions in within-subjects ex-
periments is a fundamental element of experimental re-
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search. Its purpose is to control extraneous variables so
that they do not become confounding variables.

• Experimental research on the effectiveness of a treatment
requires both a treatment condition and a control con-
dition, which can be a no-treatment control condition, a
placebo control condition, or a wait-list control condition.
Experimental treatments can also be compared with the
best available alternative.

Exercises

1. Discussion: For each of the following topics, list the pros
and cons of a between-subjects and within-subjects design
and decide which would be better.

• You want to test the relative effectiveness of two
training programs for running a marathon.

• Using photographs of people as stimuli, you want to
see if smiling people are perceived as more intelligent
than people who are not smiling.

• In a field experiment, you want to see if the way
a panhandler is dressed (neatly vs. sloppily) affects
whether or not passersby give him any money.

• You want to see if concrete nouns (e.g., dog) are
recalled better than abstract nouns (e.g., truth).

2. Discussion: Imagine that an experiment shows that par-
ticipants who receive psychodynamic therapy for a dog
phobia improve more than participants in a no-treatment
control group. Explain a fundamental problem with this
research design and at least two ways that it might be
corrected.

Conducting Experiments

Learning Objectives
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1. Describe several strategies for recruiting participants for
an experiment.

2. Explain why it is important to standardize the procedure
of an experiment and several ways to do this.

3. Explain what pilot testing is and why it is important.

The information presented so far in this chapter is enough to
design a basic experiment. When it comes time to conduct
that experiment, however, several additional practical issues
arise. In this section, we consider some of these issues and
how to deal with them. Much of this information applies to
nonexperimental studies as well as experimental ones.

Recruiting Participants

Of course, at the start of any research project you should be
thinking about how you will obtain your participants. Unless
you have access to people with schizophrenia or incarcerated
juvenile offenders, for example, then there is no point design-
ing a study that focuses on these populations. But even if you
plan to use a convenience sample, you will have to recruit par-
ticipants for your study.

There are several approaches to recruiting participants. One is
to use participants from a formal subject pool—an established
group of people who have agreed to be contacted about partic-
ipating in research studies. For example, at many colleges and
universities, there is a subject pool consisting of students en-
rolled in introductory psychology courses who must participate
in a certain number of studies to meet a course requirement.
Researchers post descriptions of their studies and students sign
up to participate, usually via an online system. Participants
who are not in subject pools can also be recruited by post-
ing or publishing advertisements or making personal appeals
to groups that represent the population of interest. For ex-
ample, a researcher interested in studying older adults could
arrange to speak at a meeting of the residents at a retirement
community to explain the study and ask for volunteers.

Even if the participants in a study receive compensation in the
form of course credit, a small amount of money, or a chance
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at being treated for a psychological problem, they are still es-
sentially volunteers. This is worth considering because peo-
ple who volunteer to participate in psychological research have
been shown to differ in predictable ways from those who do
not volunteer. Specifically, there is good evidence that on av-
erage, volunteers have the following characteristics compared
with nonvolunteers (Rosenthal and Rosnow 1975):

• They are more interested in the topic of the research.
• They are more educated.
• They have a greater need for approval.
• They have higher intelligence quotients (IQs).
• They are more sociable.
• They are higher in social class.

This difference can be an issue of external validity if there is
reason to believe that participants with these characteristics
are likely to behave differently than the general population.
For example, in testing different methods of persuading people,
a rational argument might work better on volunteers than it
does on the general population because of their generally higher
educational level and IQ.

In many field experiments, the task is not recruiting partic-
ipants but selecting them. For example, researchers Nicolas
Guéguen and Marie-Agnès de Gail conducted a field experi-
ment on the effect of being smiled at on helping, in which the
participants were shoppers at a supermarket. A confederate
walking down a stairway gazed directly at a shopper walking
up the stairway and either smiled or did not smile. Shortly
afterward, the shopper encountered another confederate, who
dropped some computer diskettes on the ground. The depen-
dent variable was whether or not the shopper stopped to help
pick up the diskettes (Gueguen and De Gail 2003). Notice that
these participants were not “recruited,” but the researchers still
had to select them from among all the shoppers taking the stairs
that day. It is extremely important that this kind of selection
be done according to a well-defined set of rules that is estab-
lished before the data collection begins and can be explained
clearly afterward. In this case, with each trip down the stairs,
the confederate was instructed to gaze at the first person he en-
countered who appeared to be between the ages of 20 and 50.
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Only if the person gazed back did he or she become a partici-
pant in the study. The point of having a well-defined selection
rule is to avoid bias in the selection of participants. For ex-
ample, if the confederate was free to choose which shoppers he
would gaze at, he might choose friendly-looking shoppers when
he was set to smile and unfriendly-looking ones when he was
not set to smile. As we will see shortly, such biases can be
entirely unintentional.

Standardizing the Procedure

It is surprisingly easy to introduce extraneous variables during
the procedure. For example, the same experimenter might give
clear instructions to one participant but vague instructions to
another. Or one experimenter might greet participants warmly
while another barely makes eye contact with them. To the
extent that such variables affect participants’ behavior, they
add noise to the data and make the effect of the independent
variable more difficult to detect. If they vary across condi-
tions, they become confounding variables and provide alterna-
tive explanations for the results. For example, if participants
in a treatment group are tested by a warm and friendly ex-
perimenter and participants in a control group are tested by
a cold and unfriendly one, then what appears to be an effect
of the treatment might actually be an effect of experimenter
demeanor. When there are multiple experimenters, the possi-
bility for introducing extraneous variables is even greater, but
is often necessary for practical reasons.

It is well known that whether research participants are male
or female can affect the results of a study. But what about
whether the experimenter is male or female? There is plenty of
evidence that this matters too. Male and female experimenters
have slightly different ways of interacting with their partici-
pants, and of course participants also respond differently to
male and female experimenters (Rosenhan 1973). For example,
in a recent study on pain perception, participants immersed
their hands in icy water for as long as they could (Kállai, Barke,
and Voss 2004). Male participants tolerated the pain longer
when the experimenter was a woman, and female participants
tolerated it longer when the experimenter was a man.
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Researcher Robert Rosenthal has spent much of his career
showing that this kind of unintended variation in the proce-
dure does, in fact, affect participants’ behavior. Furthermore,
one important source of such variation is the experimenter’s
expectations about how participants “should” behave in the
experiment. This outcome is referred to as an experimenter
expectancy effect (Rosenthal and Rosnow 1975). For example,
if an experimenter expects participants in a treatment group
to perform better on a task than participants in a control
group, then he or she might unintentionally give the treatment
group participants clearer instructions or more encouragement
or allow them more time to complete the task. In a striking
example, Rosenthal and Kermit Fode had several students in
a laboratory course in psychology train rats to run through a
maze. Although the rats were genetically similar, some of the
students were told that they were working with “maze-bright”
rats that had been bred to be good learners, and other
students were told that they were working with “maze-dull”
rats that had been bred to be poor learners. Sure enough,
over five days of training, the “maze-bright” rats made more
correct responses, made the correct response more quickly, and
improved more steadily than the “maze-dull” rats (Rosenthal
and Fode 1963). Clearly it had to have been the students’
expectations about how the rats would perform that made the
difference. But how? Some clues come from data gathered
at the end of the study, which showed that students who
expected their rats to learn quickly felt more positively about
their animals and reported behaving toward them in a more
friendly manner (e.g., handling them more).

The way to minimize unintended variation in the procedure is
to standardize it as much as possible so that it is carried out
in the same way for all participants regardless of the condition
they are in. Here are several ways to do this:

• Create a written protocol that specifies everything that
the experimenters are to do and say from the time they
greet participants to the time they dismiss them.

• Create standard instructions that participants read them-
selves or that are read to them word for word by the
experimenter.
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• Automate the rest of the procedure as much as possible
by using software packages for this purpose or even simple
computer slide shows.

• Anticipate participants’ questions and either raise and
answer them in the instructions or develop standard an-
swers for them.

• Train multiple experimenters on the protocol together
and have them practice on each other.

• Be sure that each experimenter tests participants in all
conditions.

Another good practice is to arrange for the experimenters to be
“blind” to the research question or to the condition that each
participant is tested in. The idea is to minimize experimenter
expectancy effects by minimizing the experimenters’ expecta-
tions. For example, in a drug study in which each participant
receives the drug or a placebo, it is often the case that neither
the participants nor the experimenter who interacts with the
participants know which condition he or she has been assigned
to. Because both the participants and the experimenters are
blind to the condition, this technique is referred to as a double-
blind study. (A single-blind study is one in which the partici-
pant, but not the experimenter, is blind to the condition.) Of
course, there are many times this blinding is not possible. For
example, if you are both the investigator and the only experi-
menter, it is not possible for you to remain blind to the research
question. Also, in many studies the experimenter must know
the condition because he or she must carry out the procedure
in a different way in the different conditions.

Record Keeping

It is essential to keep good records when you conduct an ex-
periment. As discussed earlier, it is typical for experimenters
to generate a written sequence of conditions before the study
begins and then to test each new participant in the next con-
dition in the sequence. As you test them, it is a good idea to
add to this list basic demographic information; the date, time,
and place of testing; and the name of the experimenter who did
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the testing. It is also a good idea to have a place for the ex-
perimenter to write down comments about unusual occurrences
(e.g., a confused or uncooperative participant) or questions that
come up. This kind of information can be useful later if you
decide to analyze sex differences or effects of different experi-
menters, or if a question arises about a particular participant
or testing session.

It can also be useful to assign an identification number to each
participant as you test them. Simply numbering them consec-
utively beginning with 1 is usually sufficient. This number can
then also be written on any response sheets or questionnaires
that participants generate, making it easier to keep them to-
gether.

Pilot Testing

It is always a good idea to conduct a pilot test of your exper-
iment. A pilot test is a small-scale study conducted to make
sure that a new procedure works as planned. In a pilot test, you
can recruit participants formally (e.g., from an established par-
ticipant pool) or you can recruit them informally from among
family, friends, classmates, and so on. The number of partici-
pants can be small, but it should be enough to give you confi-
dence that your procedure works as planned. There are several
important questions that you can answer by conducting a pilot
test:

• Do participants understand the instructions?
• What kind of misunderstandings do participants have,

what kind of mistakes do they make, and what kind of
questions do they ask?

• Do participants become bored or frustrated?
• Is an indirect manipulation effective? (You will need to

include a manipulation check.)
• Can participants guess the research question or hypothe-

sis?
• How long does the procedure take?
• Are computer programs or other automated procedures

working properly?
• Are data being recorded correctly?
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Of course, to answer some of these questions you will need to
observe participants carefully during the procedure and talk
with them about it afterward. Participants are often hesitant
to criticize a study in front of the researcher, so be sure they
understand that their participation is part of a pilot test and
you are genuinely interested in feedback that will help you im-
prove the procedure. If the procedure works as planned, then
you can proceed with the actual study. If there are problems
to be solved, you can solve them, pilot test the new procedure,
and continue with this process until you are ready to proceed.

Key Takeaways

• There are several effective methods you can use to re-
cruit research participants for your experiment, including
through formal subject pools, advertisements, and per-
sonal appeals. Field experiments require well-defined par-
ticipant selection procedures.

• It is important to standardize experimental procedures
to minimize extraneous variables, including experimenter
expectancy effects.

• It is important to conduct one or more small-scale pilot
tests of an experiment to be sure that the procedure works
as planned.

Exercises

1. Practice: List two ways that you might recruit partici-
pants from each of the following populations: a. elderly
adults b. unemployed people c. regular exercisers d. math
majors

2. Discussion: Imagine a study in which you will visually
present participants with a list of 20 words, one at a time,
wait for a short time, and then ask them to recall as many
of the words as they can. In the stressed condition, they
are told that they might also be chosen to give a short
speech in front of a small audience. In the unstressed
condition, they are not told that they might have to give
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a speech. What are several specific things that you could
do to standardize the procedure?

Single Factor Designs with 2 levels

The simplest kind of experiment has one independent variable
(single-factor) with two levels, and one dependent measure of
interest. It is important to note that any experiment must have
at least 2 levels. If you only measured the dependent variable
in one condition, then you would simply be taking a measure-
ment, and not conducting an experiment to see whether the
measurement changes between different conditions. In order to
find out if the measure changes across conditions, we need at
more than one condition.

There are three general ways to manipulate an independent
variable between two conditions: 1) present/absent, 2) differing
magnitudes, and 3) qualitatively different conditions.

For example, consider a drug company researching a drug to
reduce headache pain. They could run a present/absent experi-
ment by having one group of participants receive the drug, and
another group receive no drug, and then find out if headache
pain was reduced for the group that received the drug. They
could also run a magnitude experiment by having one group
take one pill and the other group take two (or more) pills. This
experiment could test whether taking 2 pills reduces headache
pain more than taking 1 pill. Finally, they could run an ex-
periment with qualitatively different conditions. For example,
one group could take drug 1 and another group could take a
different drug 2. This experiment could test whether one drug
is better than another at reducing headache pain.

The basic empirical question: Is there a difference?

All experiments have the same basic empirical question: Did
the dependent variable change between conditions of the inde-
pendent variable? There are many other important questions,
such as how much change happened, is the change meaningful,
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and did the independent variable really cause the change or did
some other confounding variable cause the change?

At first blush, it is easy to find out if there was any change in
the dependent measure. We simply look at the measurement
in condition 1 and condition 2. If they are the same, then there
was no change. If they are different, then there was a change.

However, in most psychology experiments the measurements in
condition 1 and 2 will always be different. This is because most
measurements in Psychology are variable. In other words, the
measurements themselves change from one person to the next,
or within the same person from one time to the next. Imagine
measuring something in condition 1 twice. If you were mea-
suring the length of a door twice, you would expect to get the
same number twice (no change). However, if you were mea-
suring how fast someone can say a word that begins with “a”
twice, you would probably find two different reaction times.

So, there are two kinds of change that researchers have to deal
with: real change caused by the independent variable, and ran-
dom change caused by measuring the dependent variable. Any
difference that is found in an experiment could be the result of
one or both of these kinds of change. As a result, it is critically
important to determine whether an observed change is real,
or to due random chance. For example, if an observed differ-
ence was due to random change that occurs by chance, then we
should not conclude that the independent variable caused the
change. If a researcher did not recognize that their observed
difference could have been caused by random change, then they
might wrongly conclude that it is was their manipulation that
caused the change; this kind of inferential error is called a type-
I error. The opposite can happen as well. A researcher might
find a difference, but conclude that the difference was caused
by random change, even though in reality their manipulation
caused the change. This kind of inferential error is called a
type-II error.

In order to avoid making type I and II inferential errors, re-
searchers need to determine whether the change they observe
was real or random. Fortunately, this is a problem that can
be solved with inferential statistics. We will go into more de-
tail about how statistics are used to solve this problem. The
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solution usually does not involve eliminating the influence of
random change, although this can be minimized by improving
the quality of the measurement (by reducing measurement er-
ror and variability). In most cases, there will be always some
random change that can not be eliminated. So, researchers are
always faced with determining whether there was a real change
above and beyond the change that occurs randomly.

The nice thing about random chance, is that it can be estimated
very precisely. As a result, for a given experiment, we can
determine both how much change can be produced by random
chance, and we can determine how often (or how likely) chance
alone would produce changes of different sizes. For example,
we could show that in some experiment, chance often produces
a change of say 10 (units of the measurement), but very rarely
(say only 5 % or 1% of the time) produces a change of 20 units.
If a researcher found a change of 20 units or greater, then they
could be confident that chance did not produce this change,
and they would then conclude that the independent variable
caused the change. If a researcher found a change of 5 units,
then they would recognize that chance alone could have easily
produced this change, and they would not be confident that
their independent variable caused the change.

Chance and Change

In order to understand how to estimate the probability that
chance caused a change between conditions, we first need to
understand how it is that chance can produce changes in the
first place.

Chance can produce changes in a measurement for two sim-
ple reasons: measurement variability, and sampling. Measure-
ment variability refers change or instability in a measurement.
Sampling refers to the process of taking measurements from a
variable.

The easiest way to see how this works is by understanding the
concept of sampling from a distribution.
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Distributions

Let’s imagine we will measure how long it takes to get from
Brooklyn College to Times square. Google maps says this takes
about 54 minutes. But, we all know that is an estimate that
sometimes be off. Any given trip could be shorter or longer. As
a result, if we measured how long several trips take for different
people, we will find different times. So, the population of travel
times has variability. We can easily describe these travel times
with distributions. For example, consider the two distributions
below.
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Both distributions have peaks around 54 minutes, which is
the average travel time between Brooklyn College and Times
Square by subway. And, both distributions have some variabil-
ity. Some travel times are shorter and some are longer than 54
minutes. The narrow distribution has less variability than the
wide distribution. For example, the narrow distribution has a
standard deviation of 2 minutes, and the wide distribution has
a standard deviation of 20 minutes.

What does the variability mean for your travel time? If there is
less variability, then more of your trips will be close to the mean
of 54 minutes. And, when the trip is shorter or longer than 54
minutes, it won’t be too much shorter or longer, only a few
minutes give or take. Notice, that certain travel times pretty
much never happen in the narrow distribution. For example, it
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never takes 20 or a 100 minutes. When there is more variability,
then more of your trips will be slower or faster than 54 minutes.
For example, although the trips will average out to 54 minutes,
many trips will be much shorter, and much longer than 54
minutes. For example, you could expect a trip of 75 minutes to
happen fairly often. But, even when the distribution is wide,
some very short or long trips still do not happen very often.
For example, a trip of 300 minutes never happens according to
the wide distribution.

Randomly sampling a number from a distribution is a lot like
taking your chances on the subway. You might get to your
destination in the average time, or you could have bad luck
and get on the train when there are a lot of delays. We have a
feeling for what the subway can do, it can sometimes be fast and
sometimes be slow. Similarly, by looking at a distribution, we
can get a feeling for what chance can do to the measurement.

Whenever we take a measurement, we can think of it as taking a
random sample from a distribution. The distribution shows us
that there are different probabilities of getting smaller or larger
numbers. The mean is the most probable number, and in the
distributions we are looking at, as the numbers get smaller or
larger, they also get less and less likely. So, just by looking at
the distribution, we can get a feeling for what chance can do.
For example, random sampling from the narrow distribution
will usually give numbers around 54, plus or minus 2 or 4ish.
And, random sampling from the wide disribution will usually
give us numbers around 54, plus or minus 20-40ish.

Differences can arise by chance because of sampling

Let’s say you and your friend each take 10 subway trips between
Brooklyn College and Times Square, and each time you use
your cell phone to record how long each trip takes. This is
the same as taking two samples of 10 scores from the travel
time distribution. What happens we we do this? Will you and
your friend have identical scores? Probably not. Each time,
different random factors will cause each of the trips to take
different amounts of time. We can plot the outcome of these
hypothetical trips below in a histogram.
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The histogram shows that in each sample, different trips took
different amounts of time. These samples were created by ran-
domly picking numbers from a normal distribution with mean
= 54, and standard deviation = 20. So, we might expect that
both of our samples with also have a mean of 54. But, as you
can see this is not true. The black lines on each of the his-
tograms show the mean travel times, and it is clear they are
not exactly the same. The difference between these two sample
means was produced by random chance.

What kind of differences can chance produce?

Let’s first look at the kind of differences that random sampling
can produce in our subway example. Imagine, that 20 people
each took 10 trips between Brooklyn College and Times Square,
and all of them recorded their travel times. The data might look
like this:

46



16 17 18 19 20

11 12 13 14 15

6 7 8 9 10

1 2 3 4 5

0 40 80 120 0 40 80 120 0 40 80 120 0 40 80 120 0 40 80 120

0
1
2
3
4
5

0
1
2
3
4
5

0
1
2
3
4
5

0
1
2
3
4
5

data

co
un

t

type

5

10

15

20

It easy to see that each person had different sets of travel times,
and that the means (black bars) are also moving around. All of
the means are close-ish to 54 minutes (which is the true mean),
but some means are smaller and larger. These sample means
are very important, and they point to another distribution, the
sampling distribution of the mean.

The sampling distribution of the mean is a hypothetical idea.
Imagine if instead of 20 people taking 10 trips, and infinite
number of people each took 10 trips, and then recorded their
travel times. Each of these samples would have it’s own mean.
What does this distribution look like? We can use a computer
to simulate this distribution below:
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Remember each of the black lines in the sample histograms
that represent the sample means? The above histogram shows
means from 10,000 of those black lines (imagining we had 10,000
take trips).

We see that the distribution is centered on 54, which is the true
mean of the population. We also see that some means get as
small as around 35, and as large as 75. However, sample means
hardly ever get smaller than 30, or larger than 80.

This graph is our window into the things that chance can do,
and the differences that random sampling can produce just by
taking measurements that have variability. What is most im-
portant, is that there are clearly hard limits on what chance can
do in this situation. We already said, that chance alone hardly
ever produces a mean larger than 75. We can use this kind of
information when we observe means that occur outside of our
chance window. For example, if one person had a sample mean
of 5 minutes for taking 10 trips, what can we infer? Well, we
can say that chance has an infintesimally small probability of
producing this sample mean. For this reason,we can also con-
fidently rule-out chance as an explanation. My guess is that
person obviously DID NOT TAKE THE SUBWAY. Perhaps
they flew in a helicopter.

It easy to rule out chance when the measurement produces
sample mean that is well outside the chance window (like 5
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minutes). It gets harder to confidently rule out chance when
the sample mean is inside the chance window, but it can still be
done. Researchers set their own criterions about this issue (e.g.,
alpha value). For example, if you found a sample mean of 70,
what would you conclude? The histogram shows this sample
mean occurs with a very low frequency, which means it does
occur by chance. But, the chances are very low, less than 1%.
So, if you are willing to accept those chances of being wrong,
you might infer that a sample mean of 75 was not produced by
chance, but perhaps produced by long delays on the subway.

Chance can produce differences between conditions in an
experiment

The reason we are spending so much time on understanding
chance, is that chance can produce differences between condi-
tions in an experiment. This occurs for the same reason that
chance can produce different sample means by random sam-
pling alone. Remember in a simple experiment, we are taking
samples of the dependent variable in two conditions. We want
to know if there was a difference in the measure between con-
ditions, so we often look at the difference in sample means
between the conditions. And, as we have learned, those sample
means can be different just because of random chance.

Fortunately, we can use methods called inferential statistics
to estimate the kinds of differences that chance can produce.
Then, we can estimate the likelihood that the differences we ob-
serve were produced by chance. When we find differences that
are likely not produced by chance, we can be more confident
that our observed differences are real, and not random.

2 level designs and t-tests

There are multiple ways to estimate whether chance is responsi-
ble for a difference in an experiment. By far the most common
approach is to use a t-test. The t-test is a statitiscal method
for analyzing the data in two conditions to determine the like-
lihood that any observed difference could have been produced
by chance. You can refer to the inferential statistics chapter,
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your old notes from statistics, discussions of t-tests in the lab
manual, and google t-tests to learn more about how they work.
For now, we will briefly describe the three different kinds of
t-tests, and give an example of how they are used to analyze
data, and how the results from a t-test are reported in journal
article.

The three most common versions of the t-test are: one-sample
t-test, independent samples t-test, and the paired samples t-
test. The one sample t-test is used to test whether a sample
mean could have come from a particular population. The in-
dependent samples t-test is used in between-subjects designs,
to test whether the sample mean in one condition is different
from the sample mean in another condition. The paired sam-
ples t-test is used in within-subjects designs, to test whether
the sample mean in one condition is different from the sample
mean in the other condition.

All t-tests give the same basic information, a t-value, and a
p-value. Simply, the p-value gives the probability that the ob-
served difference between means could have been produced by
chance alone. If we dive into the details, we will see that the p-
value estimate depends on several assumptions being met, and
also has more nuanced meanings. But for now, it gives us what
we want, an estimate of the likelihood that chance could have
produced the difference we observed. When the p-value is very
small (e.g., less than .05, or 5%), many researchers would con-
clude that a difference “statistically significant”, and probably
not produced by chance.
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An example
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Figure 8: Sample test scores for both groups were randomly
drawn from this distribution, with mean 75, and stan-
dard deviation 5.

Imagine a between-subjects experiment on 20 students (10 in
each group), asking whether wearing a red shirt or a blue shirt
changes test performance on a midterm. The IV is shirt color
(red vs. blue), and the DV is test performance (percentage on
the midterm). We have no good reason to think that shirt color
will change test performance, so we expect that the red and blue
shirt groups will have similar averages. We can simulate this
experiment by randomly sampling scores for both groups from
the same underlying distribution (see the figure).

Below are some imaginary results from the experiment.

blue red
73 73
75 75
85 74
80 74
78 78
72 77
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blue red
76 79
67 71
80 81
76 73

Looking at the individual scores is informative, but doesn’t
immediately give us a sense of the difference between groups.
So, we can compute the group means:

condition scores
Blue 76.2
Red 75.5

The means are not exactly the same, so we might want to con-
clude that the studying manipulation influences test perfor-
mance (after all, it probably does in the real world). However,
the simulated data for both groups was actually sampled from
the same distribution, with mean 75, and standard deviation 5.
As a result, we know that the difference we observed between
the sample means was due to random chance. We know this
only because I simulated the data. If this was real data, then
we wouldn’t know if the two sample means came from the the
same distribution or different distributions.

Even though we know the difference in this example was caused
by random sampling, we can still compute a t-test on the sim-
ulated data.The following t-test was conducted using R.

#>
#> Two Sample t-test
#>
#> data: blue and red
#> t = 0.3759, df = 18, p-value = 0.7114
#> alternative hypothesis: true difference in means is not equal to 0
#> 95 percent confidence interval:
#> -3.212331 4.612331
#> sample estimates:
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#> mean of x mean of y
#> 76.2 75.5

If this was a real experiment that was published in a
manuscript, then we would want to report the results by: 1)
reporting the means in each condition, and 2) reporting the
t-test, including the t-value, the degrees of freedom, and the
associated p-value. The write-up might look something like
this:

Mean test performance in the red shirt group (75.5) was not
significantly different from mean test performance in the blue
shirt group (76.2), t(18) = 0.376, p = 0.711.

Simulating the null

In the above example we found a small difference between the
means of the red and blue shirt groups. We know this difference
was produced by random sampling, and the t-test also returned
a large p-value, indicating that chance could produce this small
difference fairly often. This is all very sensible, as we don’t have
a good reason to think that wearing different colored shirts
should impact test performance.

However, as previously discussed, just the act of measuring test
performance and splitting people into two groups can produce
differences between the sample means. Importantly, even when
there are no true differences, analyzing the data with a t-test
will sometimes produce small p-values (e.g., < .05). For exam-
ple, when there are no true differences, but there is variability
in the measure, then approximately five percent of the time the
t-test will return a p < .05. In other words, if we conducted the
t-shirt experiment 100 times, we would expect that 5 of those
experiments would produce a difference between the red and
blue shirts, that a t-test would claim is unlikely to be produced
by chance.

We can get a sense of this by repeating the above experiment
1000s of times. Each time we will take new random samples
of test scores for the red and blue shirt groups, then we will
compute the sample mean for each group, and then find the
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difference between the red and blue shirt groups. We can save
the difference that we find for every replication, and then plot
a histogram of the differences. This will show us the kind of
differences that can be produced in this experiment by chance
alone.
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The first histogram shows the range of differences that can oc-
cur by chance alone. The distribution is centered on 0, because
on average there should be no differences between these two
sample means (after all they come from the same parent distri-
bution). We also see the range extends to around -5% to +5%.
This shows that some replications have the red shirt group have
up to a 5% higher test score than the blue shirt group, or vice
versa.
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For each replication, the resulting t-value and p-value was
recorded. The second histogram shows the distribution of
t-values, and the third histogram shows the distribution of
p-values.
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The distribution of p-values is flat, meaning that any p-value
between 0 and 100 should occur with the same frequency. This
shows that, just by random sampling alone, we should expect
to find significant differences (p<.05), about 5% of the time.
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Simulating real differences

Imagine a between-subjects experiment on 20 students (10 in
each group), asking whether studying or not changes test per-
formance on a midterm. The IV is studying (studying vs. not
studying), and the DV is test performance (percentage on the
midterm). We assume that studying is important for passing
a test, so the group who studies should have higher test scores
than the group who doesn’t. We can simulate this experiment
by randomly sampling scores for the study group from a distri-
bution with a higher mean than the no study group.
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For example, the histograms on the right show that the sample
scores in the study group will come from a distribution with
mean = 80, and standard deviation = 5; and the sample scores
in the no study group will come from a distribution with mean
= 65, and standard deviation 5. The simulated scores in the
experiment are in the table below:

Table 3: Example data

study no_study
77 61
76 64
88 57
81 49
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study no_study
77 55
79 69
87 60
83 61
83 57
78 53

The group means are:

condition scores
no_study 58.6
study 80.9

And, the t-test is:

#>
#> Two Sample t-test
#>
#> data: study and no_study
#> t = 9.9146, df = 18, p-value = 1.019e-08
#> alternative hypothesis: true difference in means is not equal to 0
#> 95 percent confidence interval:
#> 17.57461 27.02539
#> sample estimates:
#> mean of x mean of y
#> 80.9 58.6

The results of the t-test could be reported as follows:

Mean test performance in the study group group (80.9) was
significantly higher than mean test performance in the no study
group (58.6), t(18) = 9.915, p = 0.

Or, more simply: Students who studied (80.9) had higher av-
erages than students who didn’t study (58.6), t(18) = 9.915, p
= 0.
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Single Factor Designs with multiple levels

The experiments we have discussed so far are fairly simple.
They have one independent variable with two levels, and a sin-
gle dependent variable. Experiments can become much more
complicated by adding more levels to the independent variable,
adding more independent variables, and/or adding more depen-
dent variables. As experiments become more complicated, the
basic empirical question remains the same: Did the manipu-
lation(s) cause change in the measure(s). To ease into more
complex designs we will discuss single factor designs with more
than two levels.

Quantitative vs. Qualitative Independent variables

A single factor design with more than two levels involves a
single independent variable (factor), and typically a single de-
pendent variable. Importantly, the independent variable has
more than two levels. Two common kinds of multi-level de-
signs involve either quantitative or qualititative manipulations
of the independent variable.
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A quantitative manipulation is a change in magnitude, or
amount. For example, a drug company might be interested
in testing not only whether or not Drug A reduces headache
(perhaps by comparing one group that gets the drug, and

58



another that does not), but also how the amount of the drug
influences reductions in headache pain. So, a multi-level
experiment might have a few groups who receive, 0, 1, 2, 3, 4
or more pills, respectively.
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A qualitative manipulation involves categorically different con-
ditions. For example, a drug company might be interested in
comparing the relative effectiveness of different kinds of drugs
in reducing headache pain. They could conduct a multi-level
experiment with each group receiving a different drug, drug A,
drug B, drug C, and so on.

Interpreting the pattern of results

Possible patterns of differences
between means in a design with
three levels

1. A = B = C
2. A = B > C
3. A = B < C
4. A > B = C
5. A < B = C
6. A < B < C
7. A > B > C
8. A = C > B
9. A = C < B

Designs with only two levels are fairly straightforward to inter-
pret because there are only a few possible kinds of patterns of
differences that can be observed. These include: A>B, A=B,
and A<B. Or even more simply: A is the same as B (A=B), or
A is not the same as B (A>B, or A<B).

The number of possible patterns that could be observed in-
creases with each additional level. For example, consider an
experiment with three levels A, B, and C. The possible pat-
terns that could be observed are shown on the right.

As with two level designs, when reporting the results of ex-
periments with multiple levels, it is very important to explain
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the pattern of means across conditions. This involves telling
the reader which means were different from one another, and
which means were the same.

Again, as with 2-level designs, the process of random sampling
can produce differences in the sample means for each of the lev-
els. So, researchers also conduct statistical tests to determine
the likelihood that the results that they observed could have
been obtained by chance alone. The most common statistical
test used in this case is the one-way ANOVA (Analysis of Vari-
ance). The chapter on inferential statistics goes into more detail
about ANOVAs, and we assume that you have some memories
of how ANOVAs work from your statistics class. Nevertheless,
we go through an example to illustrate the basic process. Note,
this example is the same one discussed in chapter four of your
lab manual.

An example one-way ANOVA using R

Consider an experiment where subjects attempt to memorize
words for a later recall test under five different conditions. This
will be a between-subjects experiment with 10 simulated sub-
jects in each condition. We will have condition A, B, C, D,
and E. For example, condition A could be repeating each word
silently to yourself, condition B could be creating a mental pic-
ture of each word, and so on. To simulate data for each subject
we need to make some assumptions. Let’s say that out of 30
words most people remember about 15 of them, but there is
variation, so some people do better and some people do worse.
We can model this by sampling numbers randomly from a dis-
tribution of our choice. For convenience, we will use the normal
distribution. Let’s imagine that condition A and B help mem-
ory more than C and D, and that memory is worse in condition
E. Here is the R code and output for simulating this kind of
data.

A B C D E
21 18 13 16 9
16 19 16 15 11
21 23 15 15 9
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A B C D E
18 24 13 15 11
17 23 15 17 10
22 20 14 14 11
17 18 14 15 11
23 22 13 14 10
21 21 13 18 13
19 20 15 18 6

We have produced a table with fake data for 10 subjects in each
condition. The numbers all represent the number of correctly
recalled words for each simulated subject. For groups A and B
we sample 10 numbers, from a distribution with mean 20, and
standard deviation 2. This is a higher mean than groups C and
D (mean = 15). The lowest mean was for Group E (mean =
10). So, on average, groups A and B should have higher scores
than C and D, which should be higher than E.

Ok, so what happened in our simulated experiment. We can
see the numbers in the table, but it would be nice to summarize
them so we can more easily look at differences. After all, it’s
hard to make sense of a bunch of raw data in a table.

One way to summarize the data is to compute the group means
for each condition. This averages over the subjects, and gives us
only 5 means to look at, so it is easier to see the differences. We
can “easily” do this in R in a couple different ways. However,
R often likes the data in a particular format, in this case long-
data format. So, we will first convert to that format, and see
what it looks like.

Conditions Recall
A 21
A 16
A 21
A 18
A 17
A 22
A 17
A 23
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Conditions Recall
A 21
A 19
B 18
B 19
B 23
B 24
B 23
B 20
B 18
B 22
B 21
B 20
C 13
C 16
C 15
C 13
C 15

I’ve only printed the first 25 lines, but the dataframe contains
all of the data for conditions, C, D, and E as well. You can see
why they call it long format. It’s because each data point gets
it’s own row in the table.

Looking at the means

Now that the data is in long format we can easily make a table
of the condition means

Conditions Recall
A 19.5
B 20.8
C 14.1
D 15.7
E 10.1

We can now see the group means, but we can’t see any measure
of how variable the data are in each condition. We might, for
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example, also want to compute the standard deviation as well
as the mean, and put them both in the table. We could run the
same code from above and substite sd for mean, which would
give us a table of standard deviations. However, we will use
a more advanced function from the plyr package, called ddply.
ddply let’s you compute multiple statistics and put them all in
a single table. The syntax is a bit different, but it doesn’t take
long to get used to it.

Conditions MeanRecall StdDeviation
A 19.5 2.415230
B 20.8 2.149935
C 14.1 1.100505
D 15.7 1.494434
E 10.1 1.852926

Plotting the data

It’s often very desirable to plot the data in a graph, rather than
just present the means in a table. People find it easier to look at
graphs, because the differences in the data just pop-out much
easier than looking at numbers in a table. R has a fantastic
graphing package called ggplot2. ggplot2 is a whole philosophy
for visual design and data-presentation, and it can be daunting
at first. But, it’s complexity makes it very powerful, and when
you get the hang of it you can very quickly make all sorts of
beautiful graphs to present data. Here is some code to make
ggplot create a bar graph to plot the means, along with error
bars. In this case the error bars with represent standard errors
of the mean, rather than standard deviations. R does not have
a built in function for the standard error of the mean, so we
have to write it ourselves.
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Now it is easy to the differences between conditions. Just as
we had hoped, Groups A and B appear to have recalled more
words than Groups C and D, which remembered more words
than group E.

Conducting the ANOVA

Although the graph and the tabe show some clear differences
in the means, we still want to find out the probability that this
kind of finding occurs by chance alone. We can be confident in
the differences when we know that they do not occur very often
by chance alone. The first step is conduct a one-way ANOVA.
This is very easy in R.

We’re done! It’s only one line of code. However, we need a
couple more to see the results.

Df Sum Sq Mean Sq F value Pr(>F)
Conditions 4 737.92 184.480000 53.21538 0
Residuals 45 156.00 3.466667 NA NA

The ANOVA table gives us a bunch of information. We will go
into much greater detail about the meaning of each number in
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the table, but also assume for now that you are somewhat famil-
iar with these ideas because you have already taken statistics,
right?

We are mainly interested in the p-value, which tells how often
results like the ones we found can occur by chance. But, when
we report the results of our ANOVA, we also provide additional
information about the F-value, the degrees of freedom values,
and the mean squared error term. The reason is that if you
know these numbers, you can actually reconstruct all of the
other numbers. The results of our ANOVA are significant. You
could report this in a sentence like the following.

The main effect of condition was significant, F(4, 45) = 53.22,
MSE = 3.47, p < .001.

Comparisons between conditions

The p-value from above is much smaller than .05, which shows
the difference between conditions in the data does not occur
very often by chance alone. However, because we conducted an
omni-bus test, we only know that there is some difference be-
tween conditions, but we do not know which specific conditions
are different from one another.

So, we have to conduct additional tests between specific condi-
tions. There are multiple strategies for conducting these tests.
For now, we will simply run t-tests between comparisons of
interest.

Remember, our data simulated the pattern that memory recall
would be better for groups A and B, which would be better
than groups C and D, which would better than group E. In
other words A=B > C=D > E.

We can confirm this pattern by conducting tests to see if it
holds up. For example, how would we test the pattern A=B >
C=D > E, all of the following comparisons need to be true,

• A = B
• A > C
• A > D
• B > C
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• B > D
• C = D

and, all of the conditions should be greater than E

• A > E
• B > E
• C > E
• D > E

Let’s conduct a few of these tests, and then report the find-
ings.

Table 10: T-test results

Comparison estimate1 estimate2 statistic p.value parameter
AB 19.5 20.8 -1.271364 0.2197829 18
AC 19.5 14.1 6.433842 0.0000047 18
CD 14.1 15.7 -2.726217 0.0138572 18
DE 15.7 10.1 7.439165 0.0000007 18

Writing it all up

The following is an example results section for our hypothetical
experiment. This could serve as a model for your own results
section.

The number of correctly recalled words for each subject in each
condition were submitted to a one-way ANOVA, with memo-
rization condition (A, B, C, D, and E) as the sole between-
subjects factor. Mean recall scores in each condition are dis-
played in Figure 1.

The main effect of memorization condition was significant, F(4,
45) = 53.22, MSE = 3.47, p < .001. Figure 1 shows that
Groups A and B had higher recall scores than Groups C and D,
which had higher recall scores than Group E. This pattern was
confirmed across four independent sample t-tests. Group A (M
= 19.5) and Group B (M = 20.8) were not significantly different
t(18) = -1.27, p =0.22. Group A recalled significantly more
words than Group C (M = 14.1), t(18) = 6.43, p =0. Group C
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and Group D (M = 15.7) were not significantly different t(18)
= -2.73, p =0.014. Finally, Group D recalled significantly more
words than Group E (M = 10.1), t(18) = 7.44, p =0.
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