
5 Factorial Designs

We have usually no knowledge that any one factor
will exert its effects independently of all others that
can be varied, or that its effects are particularly
simply related to variations in these other factors.
—Ronald Fisher

In Chapter 1 we briefly described a study conducted by Si-
mone Schnall and her colleagues, in which they found that
washing one’s hands leads people to view moral transgressions
as less wrong (Schnall, Benton, and Harvey 2008). In a dif-
ferent but related study, Schnall and her colleagues investi-
gated whether feeling physically disgusted causes people to
make harsher moral judgments (Schnall et al. 2008). In this ex-
periment, they manipulated participants’ feelings of disgust by
testing them in either a clean room or a messy room that con-
tained dirty dishes, an overflowing wastebasket, and a chewed-
up pen. They also used a self-report questionnaire to measure
the amount of attention that people pay to their own bod-
ily sensations. They called this “private body consciousness.”
They measured their primary dependent variable, the harshness
of people’s moral judgments, by describing different behaviors
(e.g., eating one’s dead dog, failing to return a found wallet)
and having participants rate the moral acceptability of each one
on a scale of 1 to 7. They also measured some other dependent
variables, including participants’ willingness to eat at a new
restaurant. Finally, the researchers asked participants to rate
their current level of disgust and other emotions. The primary
results of this study were that participants in the messy room
were in fact more disgusted and made harsher moral judgments
than participants in the clean room—but only if they scored
relatively high in private body consciousness.

The research designs we have considered so far have been
simple—focusing on a question about one variable or about
a statistical relationship between two variables. But in many
ways the complex design of this experiment undertaken
by Schnall and her colleagues is more typical of research
in psychology. Fortunately, we have already covered the
basic elements of such designs in previous chapters. In this
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chapter, we look closely at how and why researchers combine
these basic elements into more complex designs. We start
with complex experiments—considering first the inclusion
of multiple dependent variables and then the inclusion of
multiple independent variables. Finally, we look at complex
correlational designs.

Multiple Dependent Variables

Learning Objectives

1. Explain why researchers often
include multiple dependent
variables in their studies.

2. Explain what a manipulation
check is and when it would be
included in an experiment.

Imagine that you have made the effort to find a research topic,
review the research literature, formulate a question, design an
experiment, obtain research ethics board (REB) approval, re-
cruit research participants, and manipulate an independent
variable. It would seem almost wasteful to measure a single
dependent variable. Even if you are primarily interested in the
relationship between an independent variable and one primary
dependent variable, there are usually several more questions
that you can answer easily by including multiple dependent
variables.

Measures of Different Constructs

Often a researcher wants to know how an independent vari-
able affects several distinct dependent variables. For example,
Schnall and her colleagues were interested in how feeling dis-
gusted affects the harshness of people’s moral judgments, but
they were also curious about how disgust affects other variables,
such as people’s willingness to eat in a restaurant. As another
example, researcher Susan Knasko was interested in how dif-
ferent odors affect people’s behavior (Knasko 1992). She con-
ducted an experiment in which the independent variable was
whether participants were tested in a room with no odor or in
one scented with lemon, lavender, or dimethyl sulfide (which
has a cabbage-like smell). Although she was primarily inter-
ested in how the odors affected people’s creativity, she was also
curious about how they affected people’s moods and perceived
health—and it was a simple enough matter to measure these
dependent variables too. Although she found that creativity
was unaffected by the ambient odor, she found that people’s
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moods were lower in the dimethyl sulfide condition, and that
their perceived health was greater in the lemon condition.

When an experiment includes multiple dependent variables,
there is again a possibility of carryover effects. For example, it
is possible that measuring participants’ moods before measur-
ing their perceived health could affect their perceived health or
that measuring their perceived health before their moods could
affect their moods. So the order in which multiple dependent
variables are measured becomes an issue. One approach is to
measure them in the same order for all participants—usually
with the most important one first so that it cannot be affected
by measuring the others. Another approach is to counterbal-
ance, or systematically vary, the order in which the dependent
variables are measured.

Manipulation Checks

When the independent variable is a construct that can only be
manipulated indirectly—such as emotions and other internal
states—an additional measure of that independent variable is
often included as a manipulation check. This is done to confirm
that the independent variable was, in fact, successfully manip-
ulated. For example, Schnall and her colleagues had their par-
ticipants rate their level of disgust to be sure that those in the
messy room actually felt more disgusted than those in the clean
room.

Manipulation checks are usually done at the end of the pro-
cedure to be sure that the effect of the manipulation lasted
throughout the entire procedure and to avoid calling unneces-
sary attention to the manipulation. Manipulation checks be-
come especially important when the manipulation of the inde-
pendent variable turns out to have no effect on the dependent
variable. Imagine, for example, that you exposed participants
to happy or sad movie music—intending to put them in happy
or sad moods—but you found that this had no effect on the
number of happy or sad childhood events they recalled. This
could be because being in a happy or sad mood has no effect
on memories for childhood events. But it could also be that
the music was ineffective at putting participants in happy or

3



sad moods. A manipulation check—in this case, a measure of
participants’ moods—would help resolve this uncertainty. If
it showed that you had successfully manipulated participants’
moods, then it would appear that there is indeed no effect of
mood on memory for childhood events. But if it showed that
you did not successfully manipulate participants’ moods, then
it would appear that you need a more effective manipulation
to answer your research question.

Measures of the Same Construct

Another common approach to including multiple dependent
variables is to operationally define and measure the same con-
struct, or closely related ones, in different ways. Imagine, for
example, that a researcher conducts an experiment on the effect
of daily exercise on stress. The dependent variable, stress, is a
construct that can be operationally defined in different ways.
For this reason, the researcher might have participants com-
plete the paper- and-pencil Perceived Stress Scale and measure
their levels of the stress hormone cortisol. This is an example
of the use of converging operations. If the researcher finds that
the different measures are affected by exercise in the same way,
then he or she can be confident in the conclusion that exercise
affects the more general construct of stress.

When multiple dependent variables are different measures of
the same construct—especially if they are measured on the
same scale—researchers have the option of combining them into
a single measure of that construct. Recall that Schnall and her
colleagues were interested in the harshness of people’s moral
judgments. To measure this construct, they presented their
participants with seven different scenarios describing morally
questionable behaviors and asked them to rate the moral ac-
ceptability of each one. Although they could have treated each
of the seven ratings as a separate dependent variable, these re-
searchers combined them into a single dependent variable by
computing their mean.

When researchers combine dependent variables in this way,
they are treating them collectively as a multiple- response
measure of a single construct. The advantage of this is that
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multiple-response measures are generally more reliable than
single-response measures. However, it is important to make
sure the individual dependent variables are correlated with
each other by computing an internal consistency measure such
as Cronbach’s 𝛼. If they are not correlated with each other,
then it does not make sense to combine them into a measure of
a single construct. If they have poor internal consistency, then
they should be treated as separate dependent variables.

Key Takeaways

• Researchers in psychology often include multiple depen-
dent variables in their studies. The primary reason is that
this easily allows them to answer more research questions
with minimal additional effort.

• When an independent variable is a construct that is ma-
nipulated indirectly, it is a good idea to include a ma-
nipulation check. This is a measure of the independent
variable typically given at the end of the procedure to
confirm that it was successfully manipulated.

• Multiple measures of the same construct can be analyzed
separately or combined to produce a single multiple-item
measure of that construct. The latter approach requires
that the measures taken together have good internal con-
sistency.

Exercises

1. Practice: List three independent variables for which it
would be good to include a manipulation check. List
three others for which a manipulation check would be
unnecessary. Hint: Consider whether there is any ambi-
guity concerning whether the manipulation will have its
intended effect.

2. Practice: Imagine a study in which the independent vari-
able is whether the room where participants are tested
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is warm (30°) or cool (12°). List three dependent vari-
ables that you might treat as measures of separate vari-
ables. List three more that you might combine and treat
as measures of the same underlying construct.

Multiple Independent Variables

Learning Objectives

1. Explain why researchers often
include multiple independent
variables in their studies.

2. Define factorial design, and
use a factorial design table to
represent and interpret simple
factorial designs.

3. Distinguish between main
effects and interactions, and
recognize and give examples
of each.

4. Sketch and interpret bar
graphs and line graphs
showing the results of studies
with simple factorial designs.

Just as it is common for studies in psychology to include multi-
ple dependent variables, it is also common for them to include
multiple independent variables. Schnall and her colleagues
studied the effect of both disgust and private body conscious-
ness in the same study. Researchers’ inclusion of multiple in-
dependent variables in one experiment is further illustrated by
the following actual titles from various professional journals:

• The Effects of Temporal Delay and Orientation on Haptic
Object Recognition

• Opening Closed Minds: The Combined Effects of Inter-
group Contact and Need for Closure on Prejudice

• Effects of Expectancies and Coping on Pain-Induced In-
tentions to Smoke

• The Effect of Age and Divided Attention on Spontaneous
Recognition

• The Effects of Reduced Food Size and Package Size on the
Consumption Behavior of Restrained and Unrestrained
Eaters

Just as including multiple dependent variables in the same ex-
periment allows one to answer more research questions, so too
does including multiple independent variables in the same ex-
periment. For example, instead of conducting one study on
the effect of disgust on moral judgment and another on the ef-
fect of private body consciousness on moral judgment, Schnall
and colleagues were able to conduct one study that addressed
both questions. But including multiple independent variables
also allows the researcher to answer questions about whether
the effect of one independent variable depends on the level of
another. This is referred to as an interaction between the in-
dependent variables. Schnall and her colleagues, for example,
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observed an interaction between disgust and private body con-
sciousness because the effect of disgust depended on whether
participants were high or low in private body consciousness. As
we will see, interactions are often among the most interesting
results in psychological research.

Factorial Designs

By far the most common approach to including multiple inde-
pendent variables in an experiment is the factorial design. In a
factorial design, each level of one independent variable (which
can also be called a factor) is combined with each level of the
others to produce all possible combinations. Each combina-
tion, then, becomes a condition in the experiment. Imagine,
for example, an experiment on the effect of cell phone use (yes
vs. no) and time of day (day vs. night) on driving ability. This
is shown in the factorial design table in Figure Figure 1. The
columns of the table represent cell phone use, and the rows
represent time of day. The four cells of the table represent the
four possible combinations or conditions: using a cell phone
during the day, not using a cell phone during the day, using
a cell phone at night, and not using a cell phone at night.
This particular design is referred to as a 2 x 2 (read “two-by-
two”) factorial design because it combines two variables, each
of which has two levels. If one of the independent variables had
a third level (e.g., using a hand-held cell phone, using a hands-
free cell phone, and not using a cell phone), then it would be
a 3 x 2 factorial design, and there would be six distinct con-
ditions. Notice that the number of possible conditions is the
product of the numbers of levels. A 2 x 2 factorial design has
four conditions, a 3 x 2 factorial design has six conditions, a 4
x 5 factorial design would have 20 conditions, and so on.

In principle, factorial designs can include any number of inde-
pendent variables with any number of levels. For example, an
experiment could include the type of psychotherapy (cognitive
vs. behavioral), the length of the psychotherapy (2 weeks vs. 2
months), and the sex of the psychotherapist (female vs. male).
This would be a 2 x 2 x 2 factorial design and would have eight
conditions. Figure Figure 2 shows one way to represent this
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Figure 1: Factorial Design Table Representing a 2 x 2 Factorial
Design
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design. In practice, it is unusual for there to be more than
three independent variables with more than two or three levels
each.

Figure 2: Factorial Design Table Representing a 2 x 2 x 2 Fac-
torial Design

This is for at least two reasons: For one, the number of condi-
tions can quickly become unmanageable. For example, adding
a fourth independent variable with three levels (e.g., therapist
experience: low vs. medium vs. high) to the current example
would make it a 2 x 2 x 2 x 3 factorial design with 24 dis-
tinct conditions. Second, the number of participants required
to populate all of these conditions (while maintaining a rea-
sonable ability to detect a real underlying effect) can render
the design unfeasible (for more information, see the discussion
about the importance of adequate statistical power in Chapter
13). As a result, in the remainder of this section we will focus
on designs with two independent variables. The general prin-
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ciples discussed here extend in a straightforward way to more
complex factorial designs.

Assigning Participants to Conditions

Recall that in a simple between-subjects design, each partici-
pant is tested in only one condition. In a simple within- subjects
design, each participant is tested in all conditions. In a facto-
rial experiment, the decision to take the between-subjects or
within-subjects approach must be made separately for each in-
dependent variable. In a between- subjects factorial design, all
of the independent variables are manipulated between subjects.
For example, all participants could be tested either while using
a cell phone or while not using a cell phone and either during
the day or during the night. This would mean that each par-
ticipant was tested in one and only one condition. In a within-
subjects factorial design, all of the independent variables are
manipulated within subjects. All participants could be tested
both while using a cell phone and while not using a cell phone
and both during the day and during the night. This would
mean that each participant was tested in all conditions. The
advantages and disadvantages of these two approaches are the
same as those discussed in Chapter 6. The between-subjects
design is conceptually simpler, avoids carryover effects, and
minimizes the time and effort of each participant. The within-
subjects design is more efficient for the researcher and controls
extraneous participant variables.

It is also possible to manipulate one independent variable be-
tween subjects and another within subjects. This is called a
mixed factorial design. For example, a researcher might choose
to treat cell phone use as a within- subjects factor by testing the
same participants both while using a cell phone and while not
using a cell phone (while counterbalancing the order of these
two conditions). But he or she might choose to treat time of
day as a between-subjects factor by testing each participant ei-
ther during the day or during the night (perhaps because this
only requires them to come in for testing once). Thus each
participant in this mixed design would be tested in two of the
four conditions.
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Regardless of whether the design is between subjects, within
subjects, or mixed, the actual assignment of participants to
conditions or orders of conditions is typically done randomly.

Non-manipulated Independent Variables

In many factorial designs, one of the independent variables is
a non-manipulated independent variable. The researcher mea-
sures it but does not manipulate it. The study by Schnall
and colleagues is a good example. One independent variable
was disgust, which the researchers manipulated by testing par-
ticipants in a clean room or a messy room. The other was
private body consciousness, a participant variable which the
researchers simply measured. Another example is a study by
Halle Brown and colleagues in which participants were exposed
to several words that they were later asked to recall (Brown
et al. 1999). The manipulated independent variable was the
type of word. Some were negative health-related words (e.g.,
tumor, coronary), and others were not health related (e.g., elec-
tion, geometry). The non-manipulated independent variable
was whether participants were high or low in hypochondriasis
(excessive concern with ordinary bodily symptoms). The result
of this study was that the participants high in hypochondriasis
were better than those low in hypochondriasis at recalling the
health-related words, but they were no better at recalling the
non-health-related words.

Such studies are extremely common, and there are several
points worth making about them. First, non- manipulated
independent variables are usually participant variables (private
body consciousness, hypochondriasis, self-esteem, and so on),
and as such they are by definition between-subjects factors.
For example, people are either low in hypochondriasis or high
in hypochondriasis; they cannot be tested in both of these
conditions. Second, such studies are generally considered to
be experiments as long as at least one independent variable
is manipulated, regardless of how many non-manipulated
independent variables are included. Third, it is important to
remember that causal conclusions can only be drawn about
the manipulated independent variable. For example, Schnall
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and her colleagues were justified in concluding that disgust
affected the harshness of their participants’ moral judgments
because they manipulated that variable and randomly assigned
participants to the clean or messy room. But they would not
have been justified in concluding that participants’ private
body consciousness affected the harshness of their participants’
moral judgments because they did not manipulate that vari-
able. It could be, for example, that having a strict moral code
and a heightened awareness of one’s body are both caused by
some third variable (e.g., neuroticism). Thus it is important
to be aware of which variables in a study are manipulated and
which are not.

Graphing the Results of Factorial Experiments

The results of factorial experiments with two independent vari-
ables can be graphed by representing one independent variable
on the x-axis and representing the other by using different kinds
of bars or lines. (The y-axis is always reserved for the depen-
dent variable.)

Figure Figure 3 shows results for two hypothetical factorial ex-
periments. The top panel shows the results of a 2 x 2 design.
Time of day (day vs. night) is represented by different locations
on the x-axis, and cell phone use (no vs. yes) is represented by
different-colored bars. (It would also be possible to represent
cell phone use on the x-axis and time of day as different-colored
bars. The choice comes down to which way seems to commu-
nicate the results most clearly.) The bottom panel of Figure
Figure 3 shows the results of a 4 x 2 design in which one of the
variables is quantitative. This variable, psychotherapy length,
is represented along the x-axis, and the other variable (psy-
chotherapy type) is represented by differently formatted lines.
This is a line graph rather than a bar graph because the variable
on the x-axis is quantitative with a small number of distinct
levels. Line graphs are also appropriate when representing mea-
surements made over a time interval (also referred to as time
series information) on the x-axis.
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Figure 3: Two Ways to Plot the Results of a Factorial Experi-
ment With Two Independent Variables
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Main Effects and Interactions

In factorial designs, there are two kinds of results that are of
interest: main effects and interaction effects (which are also
just called “interactions”). A main effect is the statistical re-
lationship between one independent variable and a dependent
variable—averaging across the levels of the other independent
variable. Thus there is one main effect to consider for each
independent variable in the study. The top panel of Figure
Figure 3 shows a main effect of cell phone use because driving
performance was better, on average, when participants were
not using cell phones than when they were. The blue bars are,
on average, higher than the red bars. It also shows a main
effect of time of day because driving performance was better
during the day than during the night—both when participants
were using cell phones and when they were not. Main effects
are independent of each other in the sense that whether or not
there is a main effect of one independent variable says nothing
about whether or not there is a main effect of the other. The
bottom panel, for example, shows a clear main effect of psy-
chotherapy length. The longer the psychotherapy, the better
it worked.

There is an interaction effect (or just “interaction”) when the
effect of one independent variable depends on the level of an-
other. Although this might seem complicated, you already have
an intuitive understanding of interactions. It probably would
not surprise you, for example, to hear that the effect of re-
ceiving psychotherapy is stronger among people who are highly
motivated to change than among people who are not motivated
to change. This is an interaction because the effect of one inde-
pendent variable (whether or not one receives psychotherapy)
depends on the level of another (motivation to change). Schnall
and her colleagues also demonstrated an interaction because
the effect of whether the room was clean or messy on partici-
pants’ moral judgments depended on whether the participants
were low or high in private body consciousness. If they were
high in private body consciousness, then those in the messy
room made harsher judgments. If they were low in private
body consciousness, then whether the room was clean or messy
did not matter.
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The effect of one independent variable can depend on the level
of the other in several different ways. This is shown in Figure
Figure 4.

In the top panel, independent variable “B” has an effect at level
1 of independent variable “A” but no effect at level 2 of indepen-
dent variable “A.” (This is much like the study of Schnall and
her colleagues where there was an effect of disgust for those high
in private body consciousness but not for those low in private
body consciousness.) In the middle panel, independent variable
“B” has a stronger effect at level 1 of independent variable “A”
than at level 2. This is like the hypothetical driving example
where there was a stronger effect of using a cell phone at night
than during the day. In the bottom panel, independent variable
“B” again has an effect at both levels of independent variable
“A,” but the effects are in opposite directions. Figure Figure 4
shows the strongest form of this kind of interaction, called a
crossover interaction. One example of a crossover interaction
comes from a study by Kathy Gilliland on the effect of caffeine
on the verbal test scores of introverts and extraverts (Gilliland
1980). Introverts perform better than extraverts when they
have not ingested any caffeine. But extraverts perform better
than introverts when they have ingested 4 mg of caffeine per
kilogram of body weight. Figure Figure 5 shows examples of
these same kinds of interactions when one of the independent
variables is quantitative and the results are plotted in a line
graph.

Note that in a crossover interaction, the two lines literally
“cross over” each other. In many studies, the primary re-
search question is about an interaction. The study by Brown
and her colleagues was inspired by the idea that people with
hypochondriasis are especially attentive to any negative health-
related information. This led to the hypothesis that people high
in hypochondriasis would recall negative health-related words
more accurately than people low in hypochondriasis but re-
call non-health-related words about the same as people low in
hypochondriasis. And of course this is exactly what happened
in this study.
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Figure 4: Bar Graphs Showing Three Types of Interactions. In
the top panel, one independent variable has an effect
at one level of the second independent variable but
not at the other. In the middle panel, one indepen-
dent variable has a stronger effect at one level of the
second independent variable than at the other. In
the bottom panel, one independent variable has the
opposite effect at one level of the second independent
variable than at the other.
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Figure 5: Line Graphs Showing Three Types of Interactions. In
the top panel, one independent variable has an effect
at one level of the second independent variable but
not at the other. In the middle panel, one indepen-
dent variable has a stronger effect at one level of the
second independent variable than at the other. In
the bottom panel, one independent variable has the
opposite effect at one level of the second independent
variable than at the other.
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Key Takeaways

• Researchers often include multiple independent variables
in their experiments. The most common approach is the
factorial design, in which each level of one independent
variable is combined with each level of the others to create
all possible conditions.

• In a factorial design, the main effect of an independent
variable is its overall effect averaged across all other in-
dependent variables. There is one main effect for each
independent variable.

• There is an interaction between two independent vari-
ables when the effect of one depends on the level of the
other. Some of the most interesting research questions
and results in psychology are specifically about interac-
tions.

Exercises

1. Practice: Return to the five article titles presented at
the beginning of this section. For each one, identify the
independent variables and the dependent variable.

2. Practice: Create a factorial design table for an exper-
iment on the effects of room temperature and noise
level on performance on the MCAT. Be sure to indicate
whether each independent variable will be manipulated
between-subjects or within-subjects and explain why.

3. Practice: Sketch 8 different bar graphs to depict each of
the following possible results in a 2 x 2 factorial experi-
ment:

• No main effect of A; no main effect of B; no inter-
action

• Main effect of A; no main effect of B; no interaction

• No main effect of A; main effect of B; no interaction

• Main effect of A; main effect of B; no interaction
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• Main effect of A; main effect of B; interaction

• Main effect of A; no main effect of B; interaction

• No main effect of A; main effect of B; interaction

• No main effect of A; no main effect of B; interaction

Factorial designs: Round 2

Designs with more than one independent variable refer to de-
signs where the experimenter manipulates at least two inde-
pendent variables. Consider the light-switch example from the
previous chapter. Imagine you are trying to figure out which
of two light switches turns on a light. The dependent variable
is the light (we measure whether it is on or off). The first in-
dependent variable is light switch #1, and it has two levels,
up or down. The second independent variable is light switch
#2, and it also has two levels, up or down. When there are
two independent variables, each with two levels, there are four
total conditions that can be tested. We can describe these four
conditions in a 2x2 table.

Switch 1 Up Switch 1 Down
Switch 2 Up Light ? Light ?

Switch 2 Down Light ? Light ?

This kind of design has a special property that makes it a fac-
torial design. That is, the levels of each independent variable
are each manipulated across the levels of the other indpendent
variable. In other words, we manipulate whether switch #1 is
up or down when switch #2 is up, and when switch numebr
#2 is down. Another term for this property of factorial designs
is “fully-crossed”.

It is possible to conduct experiments with more than indepen-
dent variable that are not fully-crossed, or factorial designs.
This would mean that each of the levels of one independent
variable are not necessarilly manipulated for each of the levels
of the other independent variables. These kinds of designs are
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sometimes called unbalanced designs, and they are not as com-
mon as fully-factorial designs. An example, of an unbalanced
design would be the following design with only 3 conditions:

Switch 1 Up Switch 1 Down
Switch 2 Up Light ? Light ?

Switch 2 Down Light ? NOT MEASURED

Factorial designs are often described using notation such as
AXB, where A= the number of levels for the first independent
variable, and B = the number of levels for the second indepen-
dent variable. The fully-crossed version of the 2-light switch
experiment would be called a 2x2 factorial design. This nota-
tion is convenient because by multiplying the numbers in the
equation we can find the number of conditions in the design.
For example 2x2 = 4 conditions.

More complicated factorial designs have more indepdent vari-
ables and more levels. We use the same notation describe these
designs. The number for each variable represents the number
of levels for that variable, and the number of numbers in the
equation represents the number of variables. So, a 2x2x2 de-
sign has three independent variables, and each one has 2 levels,
for a total of 2x2x2=6 conditions. A 3x3 design has two inde-
pendent variables, each with three levels, for a total of 9 condi-
tions. Designs can get very complicated, such as a 5x3x6x2x7
experiment, with five independent variables, each with differ-
ing numbers of levels, for a total of 1260 conditions. If you
are considering a complicated design like that one, you should
consider how to simplify it.

2x2 Factorial designs

For simplicity, we will focus mainly on 2x2 factorial designs. As
with simple designs with only one independent variable, facto-
rial designs have the same basic empirical question. Did the
manipulation cause a change in the measurement? However,
2x2 designs have more than one manipulation, so there is more
than one way that a change in measurement can be observed.
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So, we end up asking the basic empirical question more than
once.

More specifically, the analysis of factorial designs are split into
two parts: main effects and interactions. Main effects are occur
when the levels of one independent variable cause a change in
the dependent variable. In a 2x2 design, there are two inde-
pendent variables, so there are two possible main effects: the
main effect of independent variable 1, and the main effect of
independent variable 2. An interaction occurs when the effect
of one independent variable depends on the levels of the other
independent variable. My experience in teaching the concept
of main effects and interactions is that they are confusing. So,
I expect that these definitions will not be very helpful, and al-
though they are clear and precise, they only become helpful as
definitions after you understand the concepts…so they are not
useful for explaining the concepts. To explain the concepts we
will go through several different kinds of examples.

To briefly add to the confusion, or perhaps to illustrate why
these two concepts can be confusing, we will look at the eight
possible outcomes that could occur in a 2x2 factorial experi-
ment.

Possible outcome IV1 main effect IV2 main effect Interaction
1 yes yes yes
2 yes no yes
3 no yes yes
4 no no yes
5 yes yes no
6 yes no no
7 no yes no
8 no no no

In the table, a yes means that there was statistically significant
difference for one of the main effects or interaction, and a no
means that there was not a statistically significant difference.
As you can see, just by adding one more independent variable,
the number of possible outcomes quickly become more compli-
cated. When you conduct a 2x2 design, the task for analysis is
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to determine which of the 8 possibilities occurred, and then ex-
plain the patterns for each of the effects that occurred. That’s
a lot of explaining to do.

Main effects

Main effects occur when the levels of an independent variable
cause change in the measurement or dependent variable. There
is one possible main effect for each independent variable in
the design. When we find that independent variable did cause
change, then we say there was a main effect. When we find
that the independent variable did not cause change, then we
say there was no main effect.

The simplest way to understand a main effect is to pretend
that the other independent variables do not exist. If you do
this, then you simply have a single-factor design, and you are
asking whether that single factor caused change in the mea-
surement. For a 2x2 experiment, you do this twice, once for
each independent variable.

Let’s consider a silly example to illustrate an important prop-
erty of main effects. In this experiment the dependent variable
will be height in inches. The independent variables will be
shoes and hats. The shoes independent variable will have two
levels: wearing shoes vs. no shoes. The hats independent vari-
able will have two levels: wearing a hat vs. not wearing a hat.
The experiment will provide the shoes and hats. The shoes
add 1 inch to a person’s height, and the hats add 6 inches to
a person’s height. Further imagine that we conduct a within-
subjects design, so we measure each person’s height in each of
the fours conditions. Before we look at some example data, the
findings from this experiment should be pretty obvious. People
will be 1 inch taller when they wear shoes, and 6 inches taller
when they where a hat. We see this in the example data from
10 subjects presented below:

NoShoes_NoHat Shoes_NoHat NoShoes_Hat Shoes_Hat
57 58 63 64
59 60 65 66
55 56 61 62
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NoShoes_NoHat Shoes_NoHat NoShoes_Hat Shoes_Hat
56 57 62 63
58 59 64 65
59 60 65 66
57 58 63 64
57 58 63 64
55 56 61 62
58 59 64 65

The mean heights in each condition are:

x
NoShoes_NoHat 57.1
Shoes_NoHat 58.1
NoShoes_Hat 63.1
Shoes_Hat 64.1

To find the main effect of the shoes manipulation we want to
find the mean height in the no shoes condition, and compare
it to the mean height of the shoes condition. To do this, we
collapse, or average over the observations in the hat conditions.
For example, looking only at the no shoes vs. shoes conditions
we see the following averages for each subject.

NoShoes Shoes
60 61
62 63
58 59
59 60
61 62
62 63
60 61
60 61
58 59
61 62

The group means are:
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x
NoShoes 60.1
Shoes 61.1

As expected, we see that the average height is 1 inch taller
when subjects wear shoes vs. do not wear shoes. So, the main
effect of wearing shoes is to add 1 inch to a person’s height.

We can do the very same thing to find the main effect of hats.
Except in this case, we find the average heights in the no hat
vs. hat conditions by averaging over the shoe variable.

NoHat Hat
57.5 63.5
59.5 65.5
55.5 61.5
56.5 62.5
58.5 64.5
59.5 65.5
57.5 63.5
57.5 63.5
55.5 61.5
58.5 64.5

The group means are:

x
NoHat 57.6
Hat 63.6

As expected, we the average height is 6 inches taller when the
subjects wear a hat vs. do not wear a hat. So, the main effect
of wearing hats is to add 1 inch to a person’s height.

Instead of using tables to show the data, let’s use some bar
graphs. First, we will plot the average heights in all four con-
ditions.
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Some questions to ask yourself are 1) can you identify the main
effect of wearing shoes in the figure, and 2) can you identify
the main effet of wearing hats in the figure. Both of these main
effects can be seen in the figure, but they aren’t fully clear. You
have to do some visual averaging.

Perhaps the most clear is the main effect of wearing a hat. The
red bars show the conditions where people wear hats, and the
green bars show the conditions where people do not wear hats.
For both levels of the wearing shoes variable, the red bars are
higher than the green bars. That is easy enough to see. More
specifically, in both cases, wearing a hat adds exactly 6 inches
to the height, no more no less.

Less clear is the main effect of wearing shoes. This is less clear
because the effect is smaller so it is harder to see. How to find
it? You can look at the red bars first and see that the red bar
for no_shoes is slightly smaller than the red bar for shoes. The
same is true for the green bars. The green bar for no_shoes is
slightly smaller than the green bar for shoes.
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Data from 2x2 designs is often present in graphs like the one
above. An advantage of these graphs is that they display means
in all four conditions of the design. However, they do not clearly
show the two main effects. Someone looking at this graph alone
would have to guesstimate the main effects. Or, in addition to
the main effects, a researcher could present two more graphs,
one for each main effect (however, in practice this is not com-
monly done because it takes up space in a journal article, and
with practice it becomes second nature to “see” the presence
or absence of main effects in graphs showing all of the con-
ditions). If we made a separate graph for the main effect of
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shoes we should see a difference of 1 inch between conditions.
Similarly, if we made a separate graph for the main effect of
hats then we should see a difference of 6 between conditions.
Examples of both of those graphs appear in the margin.

Why have we been talking about shoes and hats? These in-
dependent variables are good examples of variables that are
truly independent from one another. Neither one influences
the other. For example, shoes with a 1 inch sole will always
add 1 inch to a person’s height. This will be true no matter
whether they wear a hat or not, and no matter how tall the
hat is. In other words, the effect of wearing a shoe does not
depend on wearing a hat. More formally, this means that the
shoe and hat independent variables do not interact. It would
be very strange if they did interact. It would mean that the
effect of wearing a shoe on height would depend on wearing a
hat. This does not happen in our universe. But in some other
imaginary universe, it could mean, for example, that wearing
a shoe adds 1 to your height when you do not wear a hat, but
adds more than 1 inch (or less than 1 inch) when you do wear
a hat. This thought experiment will be our entry point into
discussing interactions. A take-home message before we begin
is that some independent variables (like shoes and hats) do not
interact; however, there are many other independent variables
that do.

Interactions

Interactions occur when the effect of an independent variable
depends on the levels of the other independent variable. As we
discussed above, some independent variables are independent
from one another and will not produce interactions. However,
other combinations of independent variables are not indepen-
dent from one another and they produce interactions. Remem-
ber, independent variables are always manipulated indepen-
dently from the measured variable (see margin note), but they
are not necessarilly independent from each other.

These ideas can be confusing if you
think that the word “independent”
refers to the relationship between
independent variables. However, the
term “independent variable” refers
to the relationship between the
manipulated variable and the
measured variable. Remember,
“independent variables” are
manipulated independently from the
measured variable. Specifically, the
levels of any independent variable do
not change because we take
measurements. Instead, the
experimenter changes the levels of
the independent variable and then
observes possible changes in the
measures.

There are many simple examples of two independent variables
being dependent on one another to produce an outcome. Con-
sider driving a car. The dependent variable (outcome that is
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measured) could be how far the car can drive in 1 minute.
Independent variable 1 could be gas (has gas vs. no gas). Inde-
pendent variable 2 could be keys (has keys vs. no keys). This
is a 2x2 design, with four conditions.

Gas No Gas
Keys can drive x

No Keys x x

Importantly, the effect of the gas variable on driving depends
on the levels of having a key. Or, to state it in reverse, the
effect of the key variable on driving depends on the levesl of
the gas variable. Finally, in plain english. You need the keys
and gas to drive. Otherwise, there is no driving.

What makes a people hangry?

To continue with more examples, let’s consider an imaginary
experiment examining what makes people hangry. You may
have been hangry before. It’s when you become highly irri-
tated and angry because you are very hungry…hangry. I will
propose an experiment to measure conditions that are required
to produce hangriness. The pretend experiment will measure
hangriness (we ask people how hangry they are on a scale from
1-10, with 10 being most hangry, and 0 being not hangry at
all). The first independent variable will be time since last meal
(1 hour vs. 5 hours), and the second independent variable will
be how tired someone is (not tired vs very tired). I imagine the
data could look something the following bar graph.
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The graph shows clear evidence of two main effects, and an
interaction. There is a main effect of time since last meal.
Both the bars in the 1 hour conditions have smaller hanger
ratings than both of the bars in the 5 hour conditions. There
is a main effect of being tired. Both of the bars in the “not
tired” conditions are smaller than than both of the bars in the
“tired” conditions. What about the interaction?

Remember, an interaction occurs when the effect of one inde-
pendent variable depends on the level of the other independent
variable. We can look at this two ways, and either way shows
the presence of the very same interaction. First, does the effect
of being tired depend on the levels of the time since last meal?
Yes. Look first at the effect of being tired only for the “1 hour
condition”. We see the red bar (tired) is 1 unit lower than the
green bar (not_tired). So, there is an effect of 1 unit of being
tired in the 1 hour condition. Next, look at the effect of being
tired only for the “5 hour” condition. We see the red bar (tired)
is 3 units lower than the green bar (not_tired). So, there is an
effect of 3 units for being tired in the 5 hour condition. Clearly,
the size of the effect for being tired depends on the levels of the
time since last meal variable. We call this an interaction.

The second way of looking at the interaction is to start by
looking at the other variable. For example, does the effect of
time since last meal depend on the levels of the tired variable?
The answer again is yes. Look first at the effect of time since

29



last meal only for the red bars in the “not tired” condition.
The red bar in the 1 hour condition is 1 unit smaller than
the red bar in the 5 hour condition. Next, look at the effect
of time since last meal only for the green bars in the “tired”
condition. The green bar in the 1 hour condition is 3 units
smaller than the green bar in the 5 hour condition. Again,
the size of the effect of time since last meal depends on the
levels of the tired variable.No matter which way you look at
the interaction, we get the same numbers for the size of the
interaction effect, which is 2 units (a difference between 3 and 1
= 2). The interaction suggests that something special happens
when people are tired and haven’t eaten in 5 hours. In this
condition, they can become very hangry. Whereas, in the other
conditions, there are only small increases in being hangry.

Identifying main effects and interactions

Research findings are often presented to readers using graphs
or tables. For example, the very same pattern of data can
be displayed in a bar graph, line graph, or table of means.
These different formats can make the data look different, even
though the pattern in the data is the same. An important skill
to develop is the ability to identify the patterns in the data,
regardless of the format they are presented in. Some examples
of bar and line graphs are presented in the margin, and two
example tables are presented below. Each format displays the
same pattern of data.
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DV IV1 IV2
10 Level_1 Level_1
12 Level_2 Level_1
17 Level_1 Level_2
13 Level_2 Level_2

#> df$IV2
#> df$IV1 Level_1 Level_2
#> Level_1 10 17
#> Level_2 12 13
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After you become comfortable with interpreting data in these
different formats, you should be able to quickly identify the pat-
tern of main effects and interactions. For example, you would
be able to notice that all of these graphs and tables show evi-
dence for two main effects and one interaction.

As an exercise toward this goal, we will first take a closer look
at extracting main effects and interactions from tables. This
exercise will how the condition means are used to calculate the
main effects and interactions. Consider the table of condition
means below.

IV1
A B

IV2 1 4 5
2 3 8

Main effects

Main effects are the differences between the means of single
independent variable. Notice, this table only shows the condi-
tion means for each level of all independent variables. So, the
means for each IV must be calculated. The main effect for IV1
is the comparison between level A and level B, which involves
calculating the two column means. The mean for IV1 Level A
is (4+3)/2 = 3.5. The mean for IV1 Level B is (5+8)/2 = 6.5.
So the main effect is 3 (6.5 - 3.5). The main effect for IV2 is the
comparison between level 1 and level 2, which involves calculat-
ing the two row means. The mean for IV2 Level 1 is (4+5)/2 =
4.5. The mean for IV2 Level 2 is (3+8)/2 = 5.5. So the main
effect is 1 (5.5 - 4.5). The process of computing the average
for each level of a single independent variable, always involves
collapsing, or averaging over, all of the other conditions from
other variables that also occured in that condition

Interactions

Interactions ask whether the effect of one independent variable
depends on the levels of the other independent variables. This
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question is answered by computing difference scores between
the condition means. For example, we look the effect of IV1
(A vs. B) for both levels of of IV2. Focus first on the condition
means in the first row for IV2 level 1. We see that A=4 and
B=5, so the effect IV1 here was 5-4 = 1. Next, look at the
condition in the second row for IV2 level 2. We see that A=3
and B=8, so the effect of IV1 here was 8-3 = 5. We have just
calculated two differences (5-4=1, and 8-3=5). These difference
scores show that the size of the IV1 effect was different across
the levels of IV2. To calculate the interaction effect we simply
find the difference between the difference scores, 5-1=4. In gen-
eral, if the difference between the difference scores is different,
then there is an interaction effect.

Example bar graphs

IV1xIV2 IV2
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The IV1 graph shows a main effect only for IV1 (both red and
green bars are lower for level 1 than level 2). The IV1&IV2
graphs shows main effects for both variables. The two bars on
the left are both lower than the two on the right, and the red
bars are both lower than the green bars. The IV1xIV2 graph
shows an example of a classic cross-over interaction. Here, there
are no main effects, just an interaction. There is a difference
of 2 between the green and red bar for Level 1 of IV1, and a
difference of -2 for Level 2 of IV1. That makes the differences
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between the differences = 4. Why are their no main effects?
Well the average of the red bars would equal the average of the
green bars, so there is no main effect for IV2. And, the average
of the red and green bars for level 1 of IV1 would equal the
average of the red and green bars for level 2 of IV1, so there is
no main effect. The bar graph for IV2 shows only a main effect
for IV2, as the red bars are both lower than the green bars.

Example line graphs

You may find that the patterns of main effects and interaction
looks different depending on the visual format of the graph.
The exact same patterns of data plotted up in bar graph format,
are plotted as line graphs for your viewing pleasure. Note that
for the IV1 graph, the red line does not appear because it is
hidden behind the green line (the points for both numbers are
identical).
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Interpreting main effects and interactions

The presence of an interaction can sometimes change how we
interpet main effects. For example, a really strong interaction
can produce the appearance of a main effect, even though when
we look at the data most people would agree the main effect is
not there.
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In the above graph there is clearly an interaction. IV2 has no
effect under level 1 of IV1 (e.g., the red and green bars are
the same). IV2 has a large effect under level 2 of IV2 (the red
bar is 2 and the green bar is 9). So, the interaction effect is
a total of 7. Are there any main effects? This is a debatable
question. Consider the main effect for IV1. The mean for level 1
is (2+2)/2 = 2, and the mean for level 2 is (2+9)/2 = 5.5. There
is a difference between the means of 3.5, which is consistent with
a main effect. Consider, the main effect for IV2. The mean for
level 1 is again (2+2)/2 = 2, and the mean for level 2 is again
(2+9)/2 = 5.5. Again, there is a difference between the means
of 3.5, which is consistent with a main effect. What is going on
here is that the process of averagin over conditions that we use
to compute main effects is causing a main effect to appear, even
though we don’t really see clear evidence of main effects.

Clear evidence of a main effect typically refers to cases where
there is a consistent additive influence. For example, if there
really was a main effect of IV1, then both red and green bars
for level 2 should be higher, not just one of them. In other
words, the effect of IV1 did not uniformly raise or lower the
means across all of the other conditions. For this reason, the
main effects that we observed by performing the calculation are
really just an interaction in disguise.

The next example shows a case where it would be more ap-
propriate to conclude that the main effects and the interaction
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were both real.
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Can you spot the interaction right away? The difference be-
tween red and green bars is small for level 1 of IV1, but large
for level 2. The differences between the differences are differ-
ent, so there is an interaction. But, we also see clear evidence
of two main effects. For example, both the red and green bars
for IV1 level 1 are higher than IV1 Level 2. And, both of the
red bars (IV2 level 1) are higher than the green bars (IV2 level
2).

Complex Correlational Designs

Learning Objectives

1. Explain some reasons that
researchers use complex
correlational designs.

2. Create and interpret a
correlation matrix.

3. Describe how researchers can
use correlational research to
explore causal relationships
among variables—including
the limits of this approach.

As we have already seen, researchers conduct correlational stud-
ies rather than experiments when they are interested in non-
causal relationships or when they are interested in causal re-
lationships where the independent variable cannot be manipu-
lated for practical or ethical reasons. In this section, we look
at some approaches to complex correlational research that in-
volve measuring several variables and assessing the relation-
ships among them.
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Correlational Studies With Factorial Designs

We have already seen that factorial experiments can include
manipulated independent variables or a combination of manip-
ulated and non-manipulated independent variables. But fac-
torial designs can also include only non- manipulated indepen-
dent variables, in which case they are no longer experiments but
correlational studies. Consider a hypothetical study in which
a researcher measures both the moods and the self-esteem of
several participants—categorizing them as having either a pos-
itive or negative mood and as being either high or low in self-
esteem—along with their willingness to have unprotected sex-
ual intercourse. This can be conceptualized as a 2 x 2 factorial
design with mood (positive vs. negative) and self-esteem (high
vs. low) as between-subjects factors. Willingness to have un-
protected sex is the dependent variable. This design can be
represented in a factorial design table and the results in a bar
graph of the sort we have already seen. The researcher would
consider the main effect of sex, the main effect of self-esteem,
and the interaction between these two independent variables.

Again, because neither independent variable in this example
was manipulated, it is a correlational study rather than an ex-
periment. (The similar study by MacDonald and Martineau
(2002) was an experiment because they manipulated their par-
ticipants’ moods.) This is important because, as always, one
must be cautious about inferring causality from correlational
studies because of the directionality and third-variable prob-
lems. For example, a main effect of participants’ moods on
their willingness to have unprotected sex might be caused by
any other variable that happens to be correlated with their
moods.

Assessing Relationships Among Multiple Variables

Most complex correlational research, however, does not fit
neatly into a factorial design. Instead, it involves measuring
several variables—often both categorical and quantitative—
and then assessing the statistical relationships among them.
For example, researchers Nathan Radcliffe and William Klein
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studied a sample of middle-aged adults to see how their level
of optimism (measured by using a short questionnaire called
the Life Orientation Test) relates to several other variables
related to having a heart attack (Radcliffe and Klein 2002).
These included their health, their knowledge of heart attack
risk factors, and their beliefs about their own risk of having
a heart attack. They found that more optimistic participants
were healthier (e.g., they exercised more and had lower blood
pressure), knew about heart attack risk factors, and correctly
believed their own risk to be lower than that of their peers.

This approach is often used to assess the validity of new psy-
chological measures. For example, when John Cacioppo and
Richard Petty created their Need for Cognition Scale—a mea-
sure of the extent to which people like to think and value
thinking—they used it to measure the need for cognition for
a large sample of college students, along with three other vari-
ables: intelligence, socially desirable responding (the tendency
to give what one thinks is the “appropriate” response), and
dogmatism (Cacioppo and Petty 1982). The results of this
study are summarized in Figure Figure 6, which is a correla-
tion matrix showing the correlation (Pearson’s r) between every
possible pair of variables in the study.

Figure 6: Correlation Matrix Showing Correlations Among the
Need for Cognition and Three Other Variables Based
on Research by Cacioppo and Petty (1982)

For example, the correlation between the need for cognition
and intelligence was +.39, the correlation between intelligence
and socially desirable responding was +.02, and so on. (Only
half the matrix is filled in because the other half would contain
exactly the same information. Also, because the correlation
between a variable and itself is always +1.00, these values are
replaced with dashes throughout the matrix.) In this case,
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the overall pattern of correlations was consistent with the re-
searchers’ ideas about how scores on the need for cognition
should be related to these other constructs.

When researchers study relationships among a large number of
conceptually similar variables, they often use a complex statis-
tical technique called factor analysis. In essence, factor analysis
organizes the variables into a smaller number of clusters, such
that they are strongly correlated within each cluster but weakly
correlated between clusters. Each cluster is then interpreted as
multiple measures of the same underlying construct. These un-
derlying constructs are also called “factors.” For example, when
people perform a wide variety of mental tasks, factor analy-
sis typically organizes them into two main factors—one that
researchers interpret as mathematical intelligence (arithmetic,
quantitative estimation, spatial reasoning, and so on) and an-
other that they interpret as verbal intelligence (grammar, read-
ing comprehension, vocabulary, and so on). The Big Five per-
sonality factors have been identified through factor analyses of
people’s scores on a large number of more specific traits. For
example, measures of warmth, gregariousness, activity level,
and positive emotions tend to be highly correlated with each
other and are interpreted as representing the construct of ex-
traversion. As a final example, researchers Peter Rentfrow and
Samuel Gosling asked more than 1,700 university students to
rate how much they liked 14 different popular genres of mu-
sic (Rentfrow and Gosling 2003). They then submitted these
14 variables to a factor analysis, which identified four distinct
factors. The researchers called them Reflective and Complex
(blues, jazz, classical, and folk), Intense and Rebellious (rock,
alternative, and heavy metal), Upbeat and Conventional (coun-
try, soundtrack, religious, pop), and Energetic and Rhythmic
(rap/hip-hop, soul/funk, and electronica).

Two additional points about factor analysis are worth making
here. One is that factors are not categories. Factor analysis
does not tell us that people are either extraverted or consci-
entious or that they like either “reflective and complex” music
or “intense and rebellious” music. Instead, factors are con-
structs that operate independently of each other. So people
who are high in extraversion might be high or low in consci-
entiousness, and people who like reflective and complex music
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might or might not also like intense and rebellious music. The
second point is that factor analysis reveals only the underlying
structure of the variables. It is up to researchers to interpret
and label the factors and to explain the origin of that particular
factor structure. For example, one reason that extraversion and
the other Big Five operate as separate factors is that they ap-
pear to be controlled by different genes (Plomin et al. 2008).

Exploring Causal Relationships

Another important use of complex correlational research is to
explore possible causal relationships among variables. This
might seem surprising given that “correlation does not imply
causation.” It is true that correlational research cannot unam-
biguously establish that one variable causes another. Complex
correlational research, however, can often be used to rule out
other plausible interpretations.

The primary way of doing this is through the statistical control
of potential third variables. Instead of controlling these vari-
ables by random assignment or by holding them constant as
in an experiment, the researcher measures them and includes
them in the statistical analysis. Consider some research by Paul
Piff and his colleagues, who hypothesized that being lower in
socioeconomic status (SES) causes people to be more gener-
ous (Piff et al. 2010). They measured their participants’ SES
and had them play the “dictator game.” They told participants
that each would be paired with another participant in a differ-
ent room. (In reality, there was no other participant.) Then
they gave each participant 10 points (which could later be con-
verted to money) to split with the “partner” in whatever way
he or she decided. Because the participants were the “dicta-
tors,” they could even keep all 10 points for themselves if they
wanted to.

As these researchers expected, participants who were lower in
SES tended to give away more of their points than participants
who were higher in SES. This is consistent with the idea that
being lower in SES causes people to be more generous. But
there are also plausible third variables that could explain this
relationship. It could be, for example, that people who are
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lower in SES tend to be more religious and that it is their
greater religiosity that causes them to be more generous. Or
it could be that people who are lower in SES tend to come
from certain ethnic groups that emphasize generosity more than
other ethnic groups. The researchers dealt with these poten-
tial third variables, however, by measuring them and including
them in their statistical analyses. They found that neither re-
ligiosity nor ethnicity was correlated with generosity and were
therefore able to rule them out as third variables. This does not
prove that SES causes greater generosity because there could
still be other third variables that the researchers did not mea-
sure. But by ruling out some of the most plausible third vari-
ables, the researchers made a stronger case for SES as the cause
of the greater generosity.

Many studies of this type use a statistical technique called mul-
tiple regression. This involves measuring several independent
variables (X1, X2, X3,…Xi), all of which are possible causes of
a single dependent variable (Y). The result of a multiple regres-
sion analysis is an equation that expresses the dependent vari-
able as an additive combination of the independent variables.
This regression equation has the following general form:

𝑏1𝑋1 + 𝑏2𝑋2 + 𝑏3𝑋3 + ... + 𝑏𝑖𝑋𝑖 = 𝑌
The quantities b1, b2, and so on are regression weights that in-
dicate how large a contribution an independent variable makes,
on average, to the dependent variable. Specifically, they indi-
cate how much the dependent variable changes for each one-unit
change in the independent variable.

The advantage of multiple regression is that it can show
whether an independent variable makes a contribution to a
dependent variable over and above the contributions made
by other independent variables. As a hypothetical example,
imagine that a researcher wants to know how the independent
variables of income and health relate to the dependent variable
of happiness. This is tricky because income and health are
themselves related to each other. Thus if people with greater
incomes tend to be happier, then perhaps this is only because
they tend to be healthier. Likewise, if people who are healthier
tend to be happier, perhaps this is only because they tend to
make more money. But a multiple regression analysis including
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both income and happiness as independent variables would
show whether each one makes a contribution to happiness
when the other is taken into account. Research like this, by
the way, has shown both income and health make extremely
small contributions to happiness except in the case of severe
poverty or illness Diener (2000).

The examples discussed in this section only scratch the surface
of how researchers use complex correlational research to explore
possible causal relationships among variables. It is important
to keep in mind, however, that purely correlational approaches
cannot unambiguously establish that one variable causes an-
other. The best they can do is show patterns of relationships
that are consistent with some causal interpretations and incon-
sistent with others.

Key Takeaways

• Researchers often use complex correlational research to
explore relationships among several variables in the same
study.

• Complex correlational research can be used to explore
possible causal relationships among variables using tech-
niques such as multiple regression. Such designs can show
patterns of relationships that are consistent with some
causal interpretations and inconsistent with others, but
they cannot unambiguously establish that one variable
causes another.

Exercises

1. Practice: Construct a correlation matrix for a hypothet-
ical study including the variables of depression, anxiety,
self-esteem, and happiness. Include the Pearson’s r values
that you would expect.

2. Discussion: Imagine a correlational study that looks at
intelligence, the need for cognition, and high school stu-
dents’ performance in a critical-thinking course. A mul-
tiple regression analysis shows that intelligence is not re-
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lated to performance in the class but that the need for
cognition is. Explain what this study has shown in terms
of what causes good performance in the critical- thinking
course.
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