
8 Control Problems

Ya know, someday these scientists are gonna invent something that will outsmart
a rabbit —Bugs Bunny

Hewwo! Acme Pest Contwol? Weww I have a pest I want contwolled. —Elmer
Fudd

Elmer Fudd is always being outsmarted by Bugs Bunny. If Elmer Fudd was a psychologist,
he might say “Be vewy vewy quiet, I’m conducting an expewiment”. But, we all know how
the experiment would turn out. Bugs Bunny would find a way to foil Elmer Fudd’s plans and
ruin his experiment. Bugs Bunny is a metaphor for all of the control problems that can plague
experiments. In this chapter we discuss many common problems that are well known, how
they confound the interpretation of experimental results, and practical solutions for solving
the problems. Bugs Bunny wasn’t wrong: Scientists have learned how to outsmart rabbits.

Ceteris Paribus

Ceteris paribus is the Latin phrase for “All other things being equal”, or “All other condi-
tions remaining the same”. Ceteris paribus is a fundamental logical condition for making
inferences about cause and effect when conducting experiments. Experiments are a method
for making inferences about causal forces, and the effects they have on observable outcomes
in the world. Potential causes are identified by manipulating an independent variable, and
measuring potential effects on a dependent variable. If, the only change between conditions
involved change in the independent variable, then we can safely infer it caused a change in the
dependent variable. Critically, we can make this inference when, ceteris paribus, or all other
things (besides the independent variable) are equal or remain the same between the conditions
of the manipulation. However, in practice, ceteris paribus is almost never guaranteed, and
there are many possible confounding variables that vary between conditions of the indepen-
dent variable. These confounding variables place constraints on the experimenters ability to
make strong inferences about causality. The solution in practice is to identify and eliminate
or reduce the influence of all of these confounding variables when conducting experiments.

All the other things

In psychology experiments there are numerous other things besides the independent variable
that can cause change in the measured dependent variable. In chapter’s two to five we discussed
at length how chance and measurement variability (or error) can produce the appearance of
differences. We also discussed choices that experimenters can make when designing their
experiments to reduce the influence of chance, such as increasing the number of observations,
increasing the number of subjects, and improving measurement precision.
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In this chapter we will discuss a broad range of confounding variables (also termed extraneous
variables) that can influence results, as well as how to construct designs to guard against these
confounding influences. For fun, you might think of confounding variables as Bugs Bunny
showing up in one of your conditions and screwing around with the data. When this happens,
we know the difference we observed was not due to our manipulation, but to a wascally
wabbit.

Ligation: a tale of an unexpected confound

Prior to the 1950s, ligation was a common surgical procedure for heart disease. The procedure
involves cutting a patient open to expose the internal mammary artery, and then ligate the
vein. Ligating the vein involves tying it off, so it no longer flows. This procedure was thought
to lessen heart pain caused by angina.

In the 1950s some doctors became skeptical of the ligation procedure. There were no very
good medical reasons why the procedure should work, and there was increased awareness of
the possibility of placebo effects. Could it be that patients feel better simply because they
knew they were getting surgery to fix a problem, and not because the surgery actually fixed
the problem?

Two separate studies tested this possibility in an ethically questionable experiment (Cobb et al.
1959). Each experiment involved groups of patients who were scheduled for ligation surgery.
Secretly, and unbeknownst to the patients, the surgeon randomly chose whether each patient
would either, 1) receive the full ligation surgery, or 2) follow all of the surgery steps (being
anesthetized, cut-open, sown back up, etc.), except for the ligation (the vein was never tied
off). This was an experiment with two levels, one group got the treatment (ligation), and the
other group was treated as similarly as possible (ceteris paribus), but did not the the ligation.
The outcome shocked the medical community. Both groups of patients reported the same levels
of post-surgery decreases in heart pain. The inference was that the ligation manipulation was
not causally responsible for decreasing heart pain; instead, the decreases were the result of
a confounding variable. In this case, the confound appeared to be the process of having a
surgery in general. As a result, the medical community abandoned the ligation of the internal
mammary artery as a medical practice.

Third-variable problems

In correlational research a goal is to determine relationships between measured variables. For
example, does the cost of your shoes predict your current level of happiness? If people who wore
more expensive shoes were happier than people who wore less expensive shoes, there would be
a positive correlation. However, anyone could easily object that the cost of shoes may not be
the causal variable that influences happiness. Instead, any number of other variables, such as
socio-economic status, age, geographic location, etc. could both cause changes in happiness
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and the kinds of shoes that people by. All of these other possible variables that could have
causal influences are called third variables. Third variables can also influence the results of
experiments, especially when they are confounded with the experimental manipulation.

Consider the famous experiment showing that unconsciously priming concepts of being elderly
can influence how quickly people walk down a hallway (Bargh, Chen, and Burrows 1996). In
this experiment, subjects completed anagram word puzzles. Some subjects received words that
primed the concept of being elderly (e.g., bingo, florida, old, etc.), and other subject received
neutral words. After completing the word puzzles, subjects left the laboratory and walked
down the hallway to an elevator. A confederate standing in the hallway used a stopwatch to
time how long each person took to walk from the door to the elevator. The results showed that
subject primed with the elderly concept walked more slowly down the hallway than subjects
who received neutral primes. Neat!

Interestingly, a recent replication study showed that the original result could have been due
to a confounding variable (Doyen et al. 2012). One concern with the original study was that
the confederate in the hallway may not have been blind to the experimental design. That is,
the person taking the measurements with the stopwatch may have known which subjects were
primed and which subjects were not primed. As a result, it is possible that the confederate may
have expected the primed subjects to walk more slowly than the unprimed subjects. If so, these
expectations could plausibly influence how the confederate used the stopwatch. For example,
the confederate might accidentally record longer times for the primed than unprimed subjects.
If this occurred, then the priming manipulation was confounded with the expectations of the
confederate taking the measurement.

The replication study eliminated the possibility of confounds due to the confederate by using
an objective measure of walking time. In one study they installed infrared sensors to measure
walking speed, rather than a confederate with a stopwatch. They found no differences in
walking speed between priming conditions. In another study they manipulated whether the
experimenters were blind to the priming conditions of each subject. They showed no differences
in walking speed when the experimenters were blind to the priming condition. However,
when the experimenters were told which conditions the participants were supposedly in, those
participants did show differences in walking speed, even with the object timing measure using
infrared sensors. This suggests that the experimenters were biasing how the subjects walked,
perhaps by interacting more slowly or more quickly with different subjects as they left the
room.

Controlling the problems

Researchers have developed numerous strategies to control for confounding variables in exper-
imental designs. We have already briefly discussed some of these strategies, including random
assignment and counterbalancing in Chapter 4. Here, we again review and dig a bit deeper
into these concepts.
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Remember, the ideal experiment manipulates only the independent variable (s) of interest,
and holds all other possible variables constant. Psychology experiments are never ideal. And,
many other variables can not be held constant. For example, in a between-subjects design
there are different subjects in each condition. So, the different subjects are inextricably con-
founded with the manipulation. In a within-subjects design, the same person performs in both
conditions, but those conditions happen at different points in time. So, time is inextricably
confounded with the manipulation. The solution is to these confounds is to approximate the
ideal experiment. This is accomplished by attempting to equate the confounds across condi-
tions so that their influences are the same in both conditions. If the confounds are the same
in each condition, then they cannot produce differences between conditions.

Random Assignment

The process of random assignment is a tried and true method for equating confounds between
conditions. Before we look at this in the context of a psychology experiment, let’s take a
historical look at how random assignment was used in an agricultural example.

Imagine you are a corn farmer, and you want to know which fertilizer to use to make your corn
grow the best. What do you do? You could run an experiment. For example, you could by
Fertilizer A and Fertilizer B, plant corn in your field, and then apply Fertilizer A to half of your
field and Fertilizer B to the other half. At the end of the growing season you simply measure
the corn yield from both halves of the field. If the section with Fertilizer A grows more corn,
then you might use that Fertilizer A next year because it works better than Fertilizer B. Case
closed?

Maybe not. What kind of confounding variables could have been responsible for the result?
Maybe the soil on one side of the farm happened to have more nutrients than the other side,
maybe the sun is better on one side than the other, maybe one side got more or less rain than
the other, etc. There are lots of factors that can influence corn growth, and you could be very
unlucky if all of the “good stuff” happened to be on one side of the field, and all of the “bad
stuff” happened to be on the other side of the field. In this case, the fertilizer manipulation
would be completely confounded with the confounding variables.

Real-world farmers do not have the luxury of creating ideal fields that are completely identical
all respects when performing their fertilizer experiments. Instead, they have to deal with the
fact there are numerous confounding influences all across the field. However, the influence of
these confounds can be substantially reduced by the process of careful random assignment.

The above corn experiment is a simple example of a split-plot design. The field is a plot of
land, and it is split into two parts. Each part receives a different manipulation (Fertilizer A or
B). We have already discussed how this kind of experiment could be vulnerable to confounding
influences. How could the split design be improved?
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The answer is more splitting and random assignment. For example, consider applying a
checkerboard pattern to the field. There would be lots of white squares spread across the
whole field, and lots of black squares spread across the whole field. The experimenting farmer
could then apply fertilizer A to all of the white squares, and fertilizer B to all of the black
squares. If this checkerboard experiment showed that corn grew better when treated with
Fertilizer A than B, would you be more confident that the result was real, and that Fertilizer
A is better than Fertilizer B? Being able to answer this question is a litmus test for your
understanding of the virtues of random assignment.

I would be more confident of the results of the checkerboard experiment. The reason is that
assigning the manipulation to lots of little plots all around the field spreads out the influence
of confounding variables on corn growth, making it increasingly unlikely that those variables
could explain any differences due to the fertilizer manipulation. For example, if the entire left
side of the field happened to get better sun than the right half, then a simple split-plot design
with two halves (one of the left and one on the right) would be confounded with sun quality.
However, the checkerboard experiment is not confounded by sun quality, because there would
be just as many white and black squares (containing fertilizer A and B) on the left side of the
field as the right the side of the field. So, the effect of sun quality would contribute equally
to the corn in the white and black squares. Specifically, the corn on the left side of the field
might grow better, but it would grow better both for the white and black squares on the left
side. The corn on the right side might grow worse, but would grow equally worse for the white
and black squares on the right side. As a result, when you average all of the white squares
together, the effect of sun quality averages out; and ditto for the black squares.

The potential confounding effect of sun quality is just one example of a confounding variable,
and of course there are many others. However, the checkerboard assignment process accom-
plishes the result of spreading out the influences of these other confounding variables, so they
wash out in the average. The idea is that, the white and black squares are small enough, and
spread around enough, that all of the confounding variables occur just as often for the white
squares as they do for the black squares. As a result, any difference between white and black
squares must be due to the manipulation, because the confounding variables were roughly
equal between conditions.

This section is about random assignment, so you might be wondering whether the checkerboard
assignment strategy is an example of random assignment. After all, a checkerboard is not very
random at all. It is a predefined and highly predictable pattern. On the one hand, you
might imagine a seemingly more random way of conducting a similar design. For example
you could split the field into a grid of small squares, and the use a coin flip for each square
to determine whether it is a white (Condition 1) or a black (Condition 2) square. On the
other hand, you might consider that the pure checkerboard pattern and the randomized grid
offer fundamentally similar solutions. They both do a good job of spreading out the influence
of confounding variables, such that each confounding variable contributes roughly equally to
each of the manipulated conditions.
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The fundamental property of random assignment that allows it, on the average, to equalize
the influence of confounding variables is not that the assignment process itself is random
per se, but that the distribution of the resulting conditions are random with respect to the
distribution of confounding variables. For example, in the farming example, although the
checkerboard pattern is not very random, the distribution of the checkerboard pattern is likely
close to random with respect to the distribution of possible confounding variables spread
across the plot of land. The actual distribution of confounding variables across the field is an
unknown, but there is no good reason to think they would be distributed like a checkerboard
pattern or any other specific kind of pattern. We would expect the distribution of confounding
variables to be clumpy, some here some there, some everywhere. In principle, any pattern for
assigning conditions that was random with respect to the unknown distribution of confounding
variables would be a fine way to assign conditions. In practice, these patterns are easily found
by randomly assignment.

Random assignment and sample size

Importantly, random assignment does not guarantee that confounding variables with con-
tribute equally in each manipulated condition of a design for any given experiment. By chance
alone, the random assignment process could accidentally lump some confounding variables
into one condition more than another. The best way to guard against this problem is to in-
crease sample-size. Increasing sample-size increases the number of random assignments that
are made, and smooths out the lumpiness of chance.

As we discussed in Chapter 4, random-assignment is often used in between-subjects designs.
Between-subjects design are always confounded by the non-equivalent groups problem. The
subjects in each condition are different people, so they are inherently not equivalent. Or, in
other words, all other things besides the manipulation between conditions are not the same—
the subjects in each condition are different! The random assignment process is used to create
increase the equivalence between the groups.

The results of between-subjects experiments can always be criticized because of the non-
equivalent groups problem. Sometimes it is worth being skeptical of the results from these
designs. For example, imagine a between-subjects experiment looking at taking notes on a
laptop or with pen and paper that found better test performance for the group who used pen
and paper. Anyone could suggest they don’t trust the result because it is possible that the
researchers accidentally put more “smarter” students in the pen and paper group than the
laptop group. Although, this kind of concern can be warranted, especially when samples-sizes
are small, the concern is not as valid if the sample-size is larger, and good random assignment
procedures were used. In this latter case, it would be possible to estimate the chances that
random assignment alone would cause unequal distribution of “smarter” students between
conditions, and as sample-size increases, would show increasingly lower likelihoods of that
uneven assignment occurring. Furthermore, if the result is reproduced over and over again
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in many samples and across different research groups, then result deserves to be treated with
higher confidence.

Matching

Matching is a common alternative to random assignment. The aim of matching is the same,
to create equivalent groups of subjects in each experimental condition. Rather than leaving
group assignment to chance, the researcher hand picks subjects with matching qualities and
assigns them to different groups. For example, in the note taking experiment, a research might
ensure that all subjects are matched on several variables, such as having the same age, having
the same gender, having the same socio-economic-status, having the same level of general
intelligence etc.

Matching is often attempted in research with special populations. For example, research
comparing the effect of brain damage to a specific region of the brain on some ability often
first measures performance among a group of subjects with a specific pattern of brain damage,
and then finds matched control subjects who do not have brain damage, but are as similar as
possible on other dimensions as each of the impaired subjects.

Matching presents several practical difficulties. For example, it can be difficult to find matching
subjects, and it can be difficult to evaluate the goodness of particular matches even if they
can be found.

Counterbalancing

You should first refresh your memory of counterbalancing from the section on counterbalancing
in Chapter 4. Remember, that an issue with within-subjects designs is that subjects usually
contribute data to each condition at different times or orders in the experiment. As a result, the
order of the manipulation, rather than the manipulation itself, can sometimes cause differences.
Counterbalancing is a technique used to systematically control the order in which subjects
receive the manipulation.

For example in simple experiment with two conditions, one group of subjects might receive
condition 1 then condition 2, and the other group would receive condition 2 then condition
2. In this example, there are two independent variables. The primary independent variable
is manipulated within-subjects (condition 1 vs condition 2), and the counterbalancing order
is manipulated between-subjects. With this design, a researcher can determine whether there
is an effect of the primary manipulation that is independent of the order. Or, they may also
find that the order has an effect, but not the manipulation. There can also be interactions
between the two.
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Item Effects

Counterbalancing can become complicated, especially when there are multiple variables to
counterbalance. Importantly, counterbalancing can be use for variables other than order.
For example, counterbalancing can be applied to the items used across trials in a particular
task. Consider a memory experiment where the researcher is interested in whether memory
performance improves or declines depending on heart rate. The primary manipulation could
involve having subjects run on a treadmill to increase heart rate, or simply relax in a chair to
reduce heart rate. In each heart rate condition, the subject would be presented with a list of
words to memorize, and then subsequently recall to measure their memory for the word lists.
In this case, the researcher would counterbalance both the order of the heart rate manipulation,
as well as the assignment of the word lists to each condition. How many total conditions does
this produce?

There are two heart rate condition (running vs. sitting), and two orders (running then sitting,
and sitting then running). So far there are a total of four conditions. One group of subjects
will receive the words in list 1 always in the running condition, and list 2 always in the sitting
condition. Here, there are still only four conditions, but you should spot a problem. There
could be item effects. What if the words in list 1 are easier to remember than the words in
list 2. In the above design, this would produce a result showing better memory in the running
than sitting conditions. However, we know that result would be the result of an item-level
confound. To counterbalance for the item-level confound, we need to run additional groups
of subjects who always receive list 1 when they are sitting and list 2 when they are running.
This produces a total of eight conditions, shown in the table.

Order Running Sitting
Running First List 1 List 2
Sitting First List 1 List 2

Running First List 2 List 1
Sitting First List 2 List 1

Notice that the process of counterbalancing is accomplishing the same fundamental goal ac-
complished by random assignment. The goal is to spread out and equalize the influence of
possible confounding variables. The two possible confounding variables here are order and list.
Notice that all orders and list types and combinations of orders and list types occur equally
for both the running and sitting conditions.
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