
13 Descriptive Statistics

Statistics is the grammar of science. —Karl Pearson

At this point, we need to consider the basics of data analysis in
psychological research in more detail. In this chapter, we focus
on descriptive statistics—a set of techniques for summarizing
and displaying the data from your sample. We look first at some
of the most common techniques for describing single variables,
followed by some of the most common techniques for describing
statistical relationships between variables. We then look at how
to present descriptive statistics in writing and also in the form
of tables and graphs that would be appropriate for an American
Psychological Association (APA)-style research report. We end
with some practical advice for organizing and carrying out your
analyses.

Describing Single Variables

Learning Objectives

1. Use frequency tables and
histograms to display and
interpret the distribution of a
variable.

2. Compute and interpret the
mean, median, and mode of a
distribution and identify
situations in which the mean,
median, or mode is the most
appropriate measure of
central tendency.

3. Compute and interpret the
range and standard deviation
of a distribution.

4. Compute and interpret
percentile ranks and z scores.
Define APA style and list
several of its most important
characteristics.

5. Identify three levels of APA
style and give examples of
each.

6. Identify multiple sources of
information about APA style.

Descriptive statistics refers to a set of techniques for summariz-
ing and displaying data. Let us assume here that the data are
quantitative and consist of scores on one or more variables for
each of several study participants. Although in most cases the
primary research question will be about one or more statistical
relationships between variables, it is also important to describe
each variable individually. For this reason, we begin by looking
at some of the most common techniques for describing single
variables.

The Distribution of a Variable

Every variable has a distribution, which is the way the scores
are distributed across the levels of that variable. For example,
in a sample of 100 university students, the distribution of the
variable “number of siblings” might be such that 10 of them
have no siblings, 30 have one sibling, 40 have two siblings, and
so on. In the same sample, the distribution of the variable
“sex” might be such that 44 have a score of “male” and 56 have
a score of “female.”
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Frequency Tables

One way to display the distribution of a variable is in a fre-
quency table. Figure Figure 1, for example, is a frequency table
showing a hypothetical distribution of scores on the Rosenberg
Self-Esteem Scale for a sample of 40 college students. The
first column lists the values of the variable—the possible scores
on the Rosenberg scale—and the second column lists the fre-
quency of each score. This table shows that there were three
students who had self-esteem scores of 24, five who had self-
esteem scores of 23, and so on. From a frequency table like
this, one can quickly see several important aspects of a distri-
bution, including the range of scores (from 15 to 24), the most
and least common scores (22 and 17, respectively), and any
extreme scores that stand out from the rest.

There are a few other points worth noting about frequency
tables. First, the levels listed in the first column usually go from
the highest at the top to the lowest at the bottom, and they
usually do not extend beyond the highest and lowest scores in
the data. For example, although scores on the Rosenberg scale
can vary from a high of 30 to a low of 0, Figure Figure 1 only
includes levels from 24 to 15 because that range includes all the
scores in this particular data set. Second, when there are many
different scores across a wide range of values, it is often better
to create a grouped frequency table, in which the first column
lists ranges of values and the second column lists the frequency
of scores in each range. Figure Figure 2, for example, is a
grouped frequency table showing a hypothetical distribution
of simple reaction times for a sample of 20 participants. In a
grouped frequency table, the ranges must all be of equal width,
and there are usually between five and 15 of them. Finally,
frequency tables can also be used for categorical variables, in
which case the levels are category labels. The order of the
category labels is somewhat arbitrary, but they are often listed
from the most frequent at the top to the least frequent at the
bottom.
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Figure 1: Frequency Table Showing a Hypothetical Distribu-
tion of Scores on the Rosenberg Self-Esteem Scale
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Figure 2: A Grouped Frequency Table Showing a Hypothetical
Distribution of Reaction Times Reaction time (ms)
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Histograms

A histogram is a graphical display of a distribution. It presents
the same information as a frequency table but in a way that is
even quicker and easier to grasp. The histogram in Figure Fig-
ure 3 presents the distribution of self-esteem scores in Figure
Figure 1. The x-axis of the histogram represents the variable
and the y-axis represents frequency. Above each level of the
variable on the x-axis is a vertical bar that represents the num-
ber of individuals with that score. When the variable is quan-
titative, as in this example, there is usually no gap between
the bars. When the variable is categorical, however, there is
usually a small gap between them. (The gap at 17 in this his-
togram reflects the fact that there were no scores of 17 in this
data set.)

Figure 3: Histogram Showing the Distribution of Self-Esteem
Scores

Distribution Shapes

When the distribution of a quantitative variable is displayed in
a histogram, it has a shape. The shape of the distribution of
self-esteem scores in Figure Figure 3 is typical. There is a peak
somewhere near the middle of the distribution and “tails” that
taper in either direction from the peak. The distribution of
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Figure Figure 3 is unimodal, meaning it has one distinct peak,
but distributions can also be bimodal, meaning they have two
distinct peaks. Figure Figure 4, for example, shows a hypo-
thetical bimodal distribution of scores on the Beck Depression
Inventory. Distributions can also have more than two distinct
peaks, but these are relatively rare in psychological research.

Figure 4: Histogram Showing a Hypothetical Bimodal Distri-
bution of Scores on the Beck Depression Inventory
tail.

Another characteristic of the shape of a distribution is whether
it is symmetrical or skewed. The distribution in the center of
Figure Figure 5 is symmetrical. Its left and right halves are
mirror images of each other. The distribution on the left is
negatively skewed, with its peak shifted toward the upper end
of its range and a relatively long negative tail.

Figure 5: Histograms Showing Negatively Skewed, Symmetri-
cal, and Positively Skewed Distributions.

An outlier is an extreme score that is much higher or lower
than the rest of the scores in the distribution. Sometimes out-
liers represent truly extreme scores on the variable of interest.
For example, on the Beck Depression Inventory, a single clini-
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cally depressed person might be an outlier in a sample of other-
wise happy and high-functioning peers. However, outliers can
also represent errors or misunderstandings on the part of the
researcher or participant, equipment malfunctions, or similar
problems. We will say more about how to interpret outliers
and what to do about them later in this chapter.

Measures of Central Tendency and Variability

It is also useful to be able to describe the characteristics of a
distribution more precisely. Here we look at how to do this in
terms of two important characteristics: their central tendency
and their variability.

Central Tendency

The central tendency of a distribution is its middle—the point
around which the scores in the distribution tend to cluster.
(Another term for central tendency is average.) Looking back
at Figure Figure 3, for example, we can see that the self-esteem
scores tend to cluster around the values of 20 to 22. Here we will
consider the three most common measures of central tendency:
the mean, the median, and the mode.

The mean of a distribution (symbolized M) is the sum of the
scores divided by the number of scores. As a formula, it looks
like this:

𝑀 = ∑(𝑋)
𝑁

In this formula, the symbol Σ (the Greek letter sigma) is the
summation sign and means to sum across the values of the
variable X. N represents the number of scores. The mean is by
far the most common measure of central tendency, and there
are some good reasons for this. It usually provides a good
indication of the central tendency of a distribution, and it is
easily understood by most people. In addition, the mean has
statistical properties that make it especially useful in doing
inferential statistics.
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An alternative to the mean is the median. The median is the
middle score in the sense that half the scores in the distribution
are less than it and half are greater than it. The simplest way to
find the median is to organize the scores from lowest to highest
and locate the score in the middle. Consider, for example, the
following set of seven scores:

8 4 12 14 3 2 3

To find the median, simply rearrange the scores from lowest to
highest and locate the one in the middle.

2 3 3 4 8 12 14

In this case, the median is 4 because there are three scores
lower than 4 and three scores higher than 4. When there is an
even number of scores, there are two scores in the middle of
the distribution, in which case the median is the value halfway
between them. For example, if we were to add a score of 15 to
the preceding data set, there would be two scores (both 4 and
8) in the middle of the distribution, and the median would be
halfway between them (6).

One final measure of central tendency is the mode. The mode
is the most frequent score in a distribution. In the self-esteem
distribution presented in Figure Figure 1 and Figure Figure 3,
for example, the mode is 22. More students had that score than
any other. The mode is the only measure of central tendency
that can also be used for categorical variables.

In a distribution that is both unimodal and symmetrical, the
mean, median, and mode will be very close to each other at the
peak of the distribution. In a bimodal or asymmetrical distri-
bution, the mean, median, and mode can be quite different. In
a bimodal distribution, the mean and median will tend to be
between the peaks, while the mode will be at the tallest peak.
In a skewed distribution, the mean will differ from the median
in the direction of the skew (i.e., the direction of the longer
tail). For highly skewed distributions, the mean can be pulled
so far in the direction of the skew that it is no longer a good
measure of the central tendency of that distribution. Imagine,
for example, a set of four simple reaction times of 200, 250,
280, and 250 milliseconds (ms). The mean is 245 ms. But the
addition of one more score of 5,000 ms—perhaps because the
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participant was not paying attention—would raise the mean to
1,445 ms. Not only is this measure of central tendency greater
than 80% of the scores in the distribution, but it also does not
seem to represent the behavior of anyone in the distribution
very well. This is why researchers often prefer the median for
highly skewed distributions (such as distributions of reaction
times).

Keep in mind, though, that you are not required to choose a
single measure of central tendency in analyzing your data. Each
one provides slightly different information, and all of them can
be useful.

Measures of Variability

The variability of a distribution is the extent to which the scores
vary around their central tendency. Consider the two distribu-
tions in Figure Figure 6, both of which have the same central
tendency. The mean, median, and mode of each distribution
are 10. Notice, however, that the two distributions differ in
terms of their variability. The top one has relatively low vari-
ability, with all the scores relatively close to the center. The
bottom one has relatively high variability, with the scores are
spread across a much greater range.

One simple measure of variability is the range, which is sim-
ply the difference between the highest and lowest scores in the
distribution. The range of the self-esteem scores in Figure Fig-
ure 1, for example, is the difference between the highest score
(24) and the lowest score (15). That is, the range is 24 - 15 = 9.
Although the range is easy to compute and understand, it can
be misleading when there are outliers. Imagine, for example,
an exam on which all the students scored between 90 and 100.
It has a range of 10. But if there was a single student who
scored 20, the range would increase to 80—giving the impres-
sion that the scores were quite variable when in fact only one
student differed substantially from the rest.

By far the most common measure of variability is the stan-
dard deviation. The standard deviation of a distribution is,
roughly speaking, the average distance between the scores and
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Figure 6: Histograms Showing Hypothetical Distributions
With the Same Mean, Median, and Mode (10) but
With Low Variability (Top) and High Variability
(Bottom)

10



the mean. For example, the standard deviations of the distri-
butions in Figure Figure 6 are 1.69 for the top distribution and
4.30 for the bottom one. That is, while the scores in the top
distribution differ from the mean by about 1.69 units on aver-
age, the scores in the bottom distribution differ from the mean
by about 4.30 units on average.

Computing the standard deviation involves a slight complica-
tion. Specifically, it involves finding the difference between
each score and the mean, squaring each difference, finding the
mean of these squared differences, and finally finding the square
root of that mean. The formula looks like this:

𝑆𝐷 = √(∑(𝑋 − 𝑀)2)
𝑁

The computations for the standard deviation are illustrated for
a small set of data in Figure Figure 7. The first column is a set
of eight scores that has a mean of 5. The second column is the
difference between each score and the mean. The third column
is the square of each of these differences. Notice that although
the differences can be negative, the squared differences are al-
ways positive—meaning that the standard deviation is always
positive. At the bottom of the third column is the mean of the
squared differences, which is also called the variance (symbol-
ized SD2). Although the variance is itself a measure of vari-
ability, it generally plays a larger role in inferential statistics
than in descriptive statistics. Finally, below the variance is the
square root of the variance, which is the standard deviation.

N or N-1

If you have already taken a statistics course, you may have
learned to divide the sum of the squared differences by N - 1
rather than by N when you compute the variance and standard
deviation. Why is this?

By definition, the standard deviation is the square root of the
mean of the squared differences. This implies dividing the sum
of squared differences by N, as in the formula just presented.
Computing the standard deviation this way is appropriate when
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Figure 7: Computations for the Standard Deviation
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your goal is simply to describe the variability in a sample. And
learning it this way emphasizes that the variance is in fact the
mean of the squared differences—and the standard deviation is
the square root of this mean. However, most calculators and
software packages divide the sum of squared differences by N -
1. This is because the standard deviation of a sample tends to
be a bit lower than the standard deviation of the population the
sample was selected from. Dividing the sum of squares by N - 1
corrects for this tendency and results in a better estimate of the
population standard deviation. Because researchers generally
think of their data as representing a sample selected from a
larger population—and because they are generally interested
in drawing conclusions about the population—it makes sense
to routinely apply this correction.

Percentile Ranks and z Scores

In many situations, it is useful to have a way to describe the
location of an individual score within its distribution. One
approach is the percentile rank. The percentile rank of a score
is the percentage of scores in the distribution that are lower
than that score. Consider, for example, the distribution in
Figure Figure 1. For any score in the distribution, we can
find its percentile rank by counting the number of scores in
the distribution that are lower than that score and converting
that number to a percentage of the total number of scores.
Notice, for example, that five of the students represented by
the data in Figure Figure 1 had self-esteem scores of 23. In this
distribution, 32 of the 40 scores (80%) are lower than 23. Thus
each of these students has a percentile rank of 80. (It can also
be said that they scored “at the 80th percentile.”) Percentile
ranks are often used to report the results of standardized tests
of ability or achievement. If your percentile rank on a test of
verbal ability were 40, for example, this would mean that you
scored higher than 40% of the people who took the test.

Another approach is the z score. The z score for a particular
individual is the difference between that individual’s score and
the mean of the distribution, divided by the standard deviation
of the distribution:
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𝑧 = (𝑋 − 𝑀)/𝑆𝐷

A z score indicates how far above or below the mean a raw score
is, but it expresses this in terms of the standard deviation. For
example, in a distribution of intelligence quotient (IQ) scores
with a mean of 100 and a standard deviation of 15, an IQ score
of 110 would have a z score of (110 - 100) / 15 = +0.67. In other
words, a score of 110 is 0.67 standard deviations (approximately
two thirds of a standard deviation) above the mean. Similarly,
a raw score of 85 would have a z score of (85 - 100) / 15 =
-1.00. In other words, a score of 85 is one standard deviation
below the mean.

There are several reasons that z scores are important. Again,
they provide a way of describing where an individual’s score is
located within a distribution and are sometimes used to report
the results of standardized tests. They also provide one way of
defining outliers. For example, outliers are sometimes defined
as scores that have z scores less than -3.00 or greater than
+3.00. In other words, they are defined as scores that are more
than three standard deviations from the mean. Finally, z scores
play an important role in understanding and computing other
statistics, as we will see shortly.

Online Descriptive Statistics

Although many researchers use commercially available software
such as SPSS and Excel to analyze their data, there are several
free online analysis tools that can also be extremely useful.
Many allow you to enter or upload your data and then make one
click to conduct several descriptive statistical analyses. Among
them are the following.

• Rice Virtual Lab in Statistics http://onlinestatbook.com/
stat_analysis/index.html

• VassarStats http://faculty.vassar.edu/lowry/VassarStats.
html

• Bright Stat http://www.brightstat.com
• For a more complete list, see http://statpages.org/index.

html

14

http://onlinestatbook.com/stat_analysis/index.html
http://onlinestatbook.com/stat_analysis/index.html
http://faculty.vassar.edu/lowry/VassarStats.html
http://faculty.vassar.edu/lowry/VassarStats.html
http://www.brightstat.com
http://statpages.org/index.html
http://statpages.org/index.html


Key Takeaways

• Every variable has a distribution—a way that the scores
are distributed across the levels. The distribution can be
described using a frequency table and histogram. It can
also be described in words in terms of its shape, includ-
ing whether it is unimodal or bimodal, and whether it is
symmetrical or skewed.

• The central tendency, or middle, of a distribution can
be described precisely using three statistics—the mean,
median, and mode. The mean is the sum of the scores
divided by the number of scores, the median is the middle
score, and the mode is the most common score.

• The variability, or spread, of a distribution can be de-
scribed precisely using the range and standard deviation.
The range is the difference between the highest and lowest
scores, and the standard deviation is roughly the average
amount by which the scores differ from the mean.

• The location of a score within its distribution can be de-
scribed using percentile ranks or z scores. The percentile
rank of a score is the percentage of scores below that
score, and the z score is the difference between the score
and the mean divided by the standard deviation.

Exercises

1. Practice: Make a frequency table and histogram for the
following data. Then write a short description of the
shape of the distribution in words. 11, 8, 9, 12, 9, 10,
12, 13, 11, 13, 12, 6, 10, 17, 13, 11, 12, 12, 14, 14

2. Practice: For the data in Exercise 1, compute the mean,
median, mode, standard deviation, and range.

3. Practice: Using the data in Exercises 1 and 2, find

a. the percentile ranks for scores of 9 and 14
b. the z scores for scores of 8 and 12.
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Describing Statistical Relationships

Learning Objectives

1. Describe differences between
groups in terms of their
means and standard
deviations, and in terms of
Cohen’s d.

2. Describe correlations between
quantitative variables in
terms of Pearson’s r.

As we have seen throughout this book, most interesting re-
search questions in psychology are about statistical relation-
ships between variables. Recall that there is a statistical rela-
tionship between two variables when the average score on one
differs systematically across the levels of the other. In this sec-
tion, we revisit the two basic forms of statistical relationship
introduced earlier in the book—differences between groups or
conditions and relationships between quantitative variables—
and we consider how to describe them in more detail.

Differences Between Groups or Conditions

Differences between groups or conditions are usually described
in terms of the mean and standard deviation of each group
or condition. For example, Thomas Ollendick and his col-
leagues conducted a study in which they evaluated two one-
session treatments for simple phobias in children (Ollendick et
al. 2009). They randomly assigned children with an intense
fear (e.g., to dogs) to one of three conditions. In the exposure
condition, the children actually confronted the object of their
fear under the guidance of a trained therapist. In the education
condition, they learned about phobias and some strategies for
coping with them. In the wait-list control condition, they were
waiting to receive a treatment after the study was over. The
severity of each child’s phobia was then rated on a 1-to-8 scale
by a clinician who did not know which treatment the child had
received. (This was one of several dependent variables.) The
mean fear rating in the education condition was 4.83 with a
standard deviation of 1.52, while the mean fear rating in the
exposure condition was 3.47 with a standard deviation of 1.77.
The mean fear rating in the control condition was 5.56 with
a standard deviation of 1.21. In other words, both treatments
worked, but the exposure treatment worked better than the
education treatment.

As we have seen, differences between group or condition means
can be presented in a bar graph like that in Figure Figure 8,
where the heights of the bars represent the group or condition
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Figure 8: Bar Graph Showing Mean Clinician Phobia Ratings
for Children in Two Treatment Conditions

means. We will look more closely at creating American Psy-
chological Association (APA)- style bar graphs shortly.

Effect size

It is also important to be able to describe the strength of a
statistical relationship, which is often referred to as the effect
size. The most widely used measure of effect size for differences
between group or condition means is called Cohen’s d, which is
the difference between the two means divided by the standard
deviation:

𝑑 = 𝑀1 − 𝑀2
𝑆𝐷

In this formula, it does not really matter which mean is M1 and
which is M2. If there is a treatment group and a control group,
the treatment group mean is usually M1 and the control group
mean is M2. Otherwise, the larger mean is usually M1 and the
smaller mean M2 so that Cohen’s d turns out to be positive.

The standard deviation in this formula is usually a kind of av-
erage of the two group standard deviations called the pooled-
within groups standard deviation. To compute the pooled
within-groups standard deviation, add the sum of the squared
differences for Group 1 to the sum of squared differences for
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Group 2, divide this by the sum of the two sample sizes, and
then take the square root of that. Informally, however, the
standard deviation of either group can be used instead.

Conceptually, Cohen’s d is the difference between the two
means expressed in standard deviation units. (Notice its
similarity to a z score, which expresses the difference between
an individual score and a mean in standard deviation units.)
A Cohen’s d of 0.50 means that the two group means differ
by 0.50 standard deviations (half a standard deviation). A
Cohen’s d of 1.20 means that they differ by 1.20 standard
deviations. But how should we interpret these values in terms
of the strength of the relationship or the size of the difference
between the means? Figure Figure 9 presents some guidelines
for interpreting Cohen’s d values in psychological research
(Cohen, 1992)2. Values near 0.20 are considered small, values
near 0.50 are considered medium, and values near 0.80 are
considered large. Thus a Cohen’s d value of 0.50 represents a
medium-sized difference between two means, and a Cohen’s d
value of 1.20 represents a very large difference in the context
of psychological research. In the research by Ollendick and his
colleagues, there was a large difference (d = 0.82) between the
exposure and education conditions.

Figure 9: Guidelines for Referring to Cohen’s d and Pearson’s
r Values as Strong, Medium, or Weak

Cohen’s d is useful because it has the same meaning regardless
of the variable being compared or the scale it was measured on.
A Cohen’s d of 0.20 means that the two group means differ by
0.20 standard deviations whether we are talking about scores
on the Rosenberg Self-Esteem scale, reaction time measured
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in milliseconds, number of siblings, or diastolic blood pressure
measured in millimeters of mercury. Not only does this make
it easier for researchers to communicate with each other about
their results, it also makes it possible to combine and compare
results across different studies using different measures.

Be aware that the term effect size can be misleading because
it suggests a causal relationship—that the difference between
the two means is an “effect” of being in one group or condition
as opposed to another. Imagine, for example, a study showing
that a group of exercisers is happier on average than a group of
nonexercisers, with an “effect size” of d = 0.35. If the study was
an experiment—with participants randomly assigned to exer-
cise and no- exercise conditions—then one could conclude that
exercising caused a small to medium-sized increase in happi-
ness. If the study was correlational, however, then one could
conclude only that the exercisers were happier than the nonex-
ercisers by a small to medium-sized amount. In other words,
simply calling the difference an “effect size” does not make the
relationship a causal one.

Sex Differences Expressed as Cohen’s d

Researcher Janet Shibley Hyde has looked at the results of
numerous studies on psychological sex differences and expressed
the results in terms of Cohen’s d (Hyde 2007). Following are a
few of the values she has found, averaging across several studies
in each case. (Note that because she always treats the mean
for men as M1 and the mean for women as M2, positive values
indicate that men score higher and negative values indicate that
women score higher.)

Hyde points out that although men and women differ by a large
amount on some variables (e.g., attitudes toward casual sex),
they differ by only a small amount on the vast majority. In
many cases, Cohen’s d is less than 0.10, which she terms a
“trivial” difference. (The difference in talkativeness discussed
in Chapter 1 was also trivial: d = 0.06.) Although researchers
and non-researchers alike often emphasize sex differences, Hyde
has argued that it makes at least as much sense to think of men
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Figure 10: Cohen’s D effect sizes

and women as fundamentally similar. She refers to this as the
“gender similarities hypothesis.”

Correlations Between Quantitative Variables

As we have seen throughout the book, many interesting statis-
tical relationships take the form of correlations between quan-
titative variables. For example, researchers Kurt Carlson and
Jacqueline Conard conducted a study on the relationship be-
tween the alphabetical position of the first letter of people’s
last names (from A = 1 to Z = 26) and how quickly those
people responded to consumer appeals (Carlson and Conard
2011). In one study, they sent e-mails to a large group of MBA
students, offering free basketball tickets from a limited supply.
The result was that the further toward the end of the alphabet
students’ last names were, the faster they tended to respond.
These results are summarized in Figure Figure 11.

Such relationships are often presented using line graphs or scat-
terplots, which show how the level of one variable differs across
the range of the other. In the line graph in Figure Figure 11, for
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Figure 11: Line Graph Showing the Relationship Between the
Alphabetical Position of People’s Last Names and
How Quickly Those People Respond to Offers of
Consumer Goods

example, each point represents the mean response time for par-
ticipants with last names in the first, second, third, and fourth
quartiles (or quarters) of the name distribution. It clearly
shows how response time tends to decline as people’s last names
get closer to the end of the alphabet. The scatterplot in Fig-
ure Figure 1, which is reproduced from Chapter 5, shows the
relationship between 25 research methods students’ scores on
the Rosenberg Self-Esteem Scale given on two occasions a week
apart. Here the points represent individuals, and we can see
that the higher students scored on the first occasion, the higher
they tended to score on the second occasion. In general, line
graphs are used when the variable on the x-axis has (or is orga-
nized into) a small number of distinct values, such as the four
quartiles of the name distribution. Scatterplots are used when
the variable on the x-axis has a large number of values, such as
the different possible self-esteem scores.

The data presented in Figure Figure 12 provide a good exam-
ple of a positive relationship, in which higher scores on one
variable tend to be associated with higher scores on the other
(so that the points go from the lower left to the upper right of
the graph). The data presented in Figure Figure 11 provide a
good example of a negative relationship, in which higher scores
on one variable tend to be associated with lower scores on the
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Figure 12: Statistical Relationship Between Several University
Students’ Scores on the Rosenberg Self-Esteem Scale
Given on Two Occasions a Week Apart

other (so that the points go from the upper left to the lower
right).

Both of these examples are also linear relationships, in which
the points are reasonably well fit by a single straight line. Non-
linear relationships are those in which the points are better fit
by a curved line. Figure Figure 13, for example, shows a hy-
pothetical relationship between the amount of sleep people get
per night and their level of depression. In this example, the
line that best fits the points is a curve—a kind of upside down
“U”—because people who get about eight hours of sleep tend
to be the least depressed, while those who get too little sleep
and those who get too much sleep tend to be more depressed.
Nonlinear relationships are not uncommon in psychology, but a
detailed discussion of them is beyond the scope of this book.

As we saw earlier in the book, the strength of a correlation
between quantitative variables is typically measured using a
statistic called Pearson’s r. As Figure Figure 14 shows, its pos-
sible values range from -1.00, through zero, to +1.00. A value
of 0 means there is no relationship between the two variables.
In addition to his guidelines for interpreting Cohen’s d, Cohen
offered guidelines for interpreting Pearson’s r in psychological
research (see Figure Figure 8). Values near ±.10 are considered
small, values near ± .30 are considered medium, and values near
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Figure 13: A Hypothetical Nonlinear Relationship Between
How Much Sleep People Get per Night and How
Depressed They Are

±.50 are considered large. Notice that the sign of Pearson’s r is
unrelated to its strength. Pearson’s r values of +.30 and -.30,
for example, are equally strong; it is just that one represents a
moderate positive relationship and the other a moderate nega-
tive relationship. Like Cohen’s d, Pearson’s r is also referred to
as a measure of “effect size” even though the relationship may
not be a causal one.

Figure 14: Pearson’s r Ranges From -1.00 (Representing the
Strongest Possible Negative Relationship), Through
0 (Representing No Relationship), to +1.00 (Repre-
senting the Strongest Possible Positive Relationship)

The computations for Pearson’s r are more complicated than
those for Cohen’s d. Although you may never have to do them
by hand, it is still instructive to see how. Computationally,
Pearson’s r is the “mean cross-product of z scores.” To compute
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it, one starts by transforming all the scores to z scores. For
the X variable, subtract the mean of X from each score and
divide each difference by the standard deviation of X. For the
Y variable, subtract the mean of Y from each score and divide
each difference by the standard deviation of Y. Then, for each
individual, multiply the two z scores together to form a cross-
product. Finally, take the mean of the cross-products. The
formula looks like this:

𝑟 = ∑ 𝑍𝑥𝑍𝑦
𝑁

Figure Figure 15 illustrates these computations for a small set
of data. The first column lists the scores for the X variable,
which has a mean of 4.00 and a standard deviation of 1.90. The
second column is the z-score for each of these raw scores. The
third and fourth columns list the raw scores for the Y variable,
which has a mean of 40 and a standard deviation of 11.78, and
the corresponding z scores. The fifth column lists the cross-
products. For example, the first one is 0.00 multiplied by -0.85,
which is equal to 0.00. The second is 1.58 multiplied by 1.19,
which is equal to 1.88. The mean of these cross-products, shown
at the bottom of that column, is Pearson’s r, which in this case
is +.53. There are other formulas for computing Pearson’s r by
hand that may be quicker. This approach, however, is much
clearer in terms of communicating conceptually what Pearson’s
r is.

There are two common situations in which the value of Pear-
son’s r can be misleading. One is when the relationship under
study is nonlinear. Even though Figure Figure 13 shows a fairly
strong relationship between depression and sleep, Pearson’s r
would be close to zero because the points in the scatterplot are
not well fit by a single straight line. This means that it is im-
portant to make a scatterplot and confirm that a relationship
is approximately linear before using Pearson’s r. The other is
when one or both of the variables have a limited range in the
sample relative to the population. This problem is referred to
as restriction of range. Assume, for example, that there is a
strong negative correlation between people’s age and their en-
joyment of hip hop music as shown by the scatterplot in Figure
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Figure 15: Sample Computations for Pearson’s r

Figure 16.

Pearson’s r here is -.77. However, if we were to collect data
only from 18- to 24-year-olds – represented by the shaded area
of Figure Figure 16 – then the relationship would seem to be
quite weak. In fact, Pearson’s r for this restricted range of ages
is 0. It is a good idea, therefore, to design studies to avoid
restriction of range. For example, if age is one of your primary
variables, then you can plan to collect data from people of a
wide range of ages. Because restriction of range is not always
anticipated or easily avoidable, however, it is good practice
to examine your data for possible restriction of range and to
interpret Pearson’s r in light of it. (There are also statistical
methods to correct Pearson’s r for restriction of range, but they
are beyond the scope of this book).

Key Takeaways

• Differences between groups or conditions are typically de-
scribed in terms of the means and standard deviations of

25



Figure 16: Hypothetical Data Showing How a Strong Overall
Correlation Can Appear to Be Weak When One
Variable Has a Restricted Range.The overall corre-
lation here is -.77, but the correlation for the 18- to
24-year-olds (in the blue box) is 0.

the groups or conditions or in terms of Cohen’s d and are
presented in bar graphs.

• Cohen’s d is a measure of relationship strength (or ef-
fect size) for differences between two group or condition
means. It is the difference of the means divided by the
standard deviation. In general, values of ±0.20, ±0.50,
and ±0.80 can be considered small, medium, and large,
respectively.

• Correlations between quantitative variables are typically
described in terms of Pearson’s r and presented in line
graphs or scatterplots.

• Pearson’s r is a measure of relationship strength (or effect
size) for relationships between quantitative variables. It
is the mean cross-product of the two sets of z scores. In
general, values of ±.10, ±.30, and ±.50 can be considered
small, medium, and large, respectively.

Exercises

1. Practice: The following data represent scores on the
Rosenberg Self-Esteem Scale for a sample of 10 Japanese
university students and 10 American university students.
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Although hypothetical, these data are consistent with
empirical findings (Schmitt and Allik 2005).Compute
the means and standard deviations of the two groups,
make a bar graph, compute Cohen’s d, and describe the
strength of the relationship in words.

2. Practice: The hypothetical data that follow are extraver-
sion scores and the number of Facebook friends for 15 uni-
versity students. Make a scatterplot for these data, com-
pute Pearson’s r, and describe the relationship in words.

Expressing Your Results

Learning Objectives

1. Write out simple descriptive
statistics in American
Psychological Association
(APA) style.

2. Interpret and create simple
APA-style graphs—including
bar graphs, line graphs, and
scatterplots.

3. Interpret and create simple
APA-style tables—including
tables of group or condition
means and correlation
matrices.

Once you have conducted your descriptive statistical analyses,
you will need to present them to others. In this section, we
focus on presenting descriptive statistical results in writing, in
graphs, and in tables—following American Psychological Asso-
ciation (APA) guidelines for written research reports. These
principles can be adapted easily to other presentation formats
such as posters and slide show presentations.

Presenting Descriptive Statistics in Writing

When you have a small number of results to report, it is often
most efficient to write them out. There are a few important
APA style guidelines here. First, statistical results are always
presented in the form of numerals rather than words and are
usually rounded to two decimal places (e.g., “2.00” rather than
“two” or “2”). They can be presented either in the narrative de-
scription of the results or parenthetically—much like reference
citations. Here are some examples:

• The mean age of the participants was 22.43 years with a
standard deviation of 2.34.

• Among the low self-esteem participants, those in a neg-
ative mood expressed stronger intentions to have unpro-
tected sex (M = 4.05, SD = 2.32) than those in a positive
mood (M = 2.15, SD = 2.27).

• The treatment group had a mean of 23.40 (SD = 9.33),
and the control group had a mean of 20.87 (SD = 8.45).
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Figure 17: Sample data
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Figure 18: Sample data
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• The test-retest correlation was .96.
• There was a moderate negative correlation between the

alphabetical position of respondents’ last names and their
response time (r = -.27).

Notice that when presented in the narrative, the terms mean
and standard deviation are written out, but when presented
parenthetically, the symbols M and SD are used instead.

Notice also that it is especially important to use parallel con-
struction to express similar or comparable results in similar
ways. Parallel construction refers to using consistent language
in a sentence. For example, the third sentence above has good
parallel construction, because it uses the same format to de-
scribe the treatment and control group.

The treatment group had a mean of 23.40 (SD = 9.33), and the
control group had a mean of 20.87 (SD = 8.45).

Consider the nonparallel alternative, which is more difficult
read.

The treatment group had a mean of 23.40 (SD = 9.33), while
20.87 was the mean of the control group, which had a standard
deviation of 8.45.

Presenting Descriptive Statistics in Graphs

When you have a large number of results to report, you can
often do it more clearly and efficiently with a graph. When
you prepare graphs for an APA-style research report, there are
some general guidelines that you should keep in mind. First,
the graph should always add important information rather than
repeat information that already appears in the text or in a ta-
ble. (If a graph presents information more clearly or efficiently,
then you should keep the graph and eliminate the text or table.)
Second, graphs should be as simple as possible. For example,
the Publication Manual discourages the use of color unless it is
absolutely necessary (although color can still be an effective ele-
ment in posters, slide show presentations, or textbooks.) Third,
graphs should be interpretable on their own. A reader should
be able to understand the basic result based only on the graph
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and its caption and should not have to refer to the text for an
explanation.

There are also several more technical guidelines for graphs that
include the following:

• Layout The graph should be slightly wider than it is tall.
The independent variable should be plotted on the x-axis
and the dependent variable on the y-axis. Values should
increase from left to right on the x-axis and from bottom
to top on the y-axis.

• Axis Labels and Legends Axis labels should be clear and
concise and include the units of measurement if they do
not appear in the caption. Axis labels should be parallel
to the axis. Legends should appear within the boundaries
of the graph. Text should be in the same simple font
throughout and differ by no more than four points.

• Captions Captions should briefly describe the figure, ex-
plain any abbreviations, and include the units of measure-
ment if they do not appear in the axis labels. Captions in
an APA manuscript should be typed on a separate page
that appears at the end of the manuscript. See Chapter
11 for more information.

Bar Graphs

As we have seen throughout this book, bar graphs are generally
used to present and compare the mean scores for two or more
groups or conditions. The bar graph in Figure Figure 19 is in
APA-style . Notice that it conforms to all the guidelines listed.
A new element in Figure Figure 19 is the smaller vertical bars
that extend both upward and downward from the top of each
main bar. These are error bars, and they represent the vari-
ability in each group or condition. Although they sometimes
extend one standard deviation in each direction, they are more
likely to extend one standard error in each direction (as in Fig-
ure Figure 19). The standard error is the standard deviation of
the group divided by the square root of the sample size of the
group. The standard error is used because, in general, a differ-
ence between group means that is greater than two standard
errors is statistically significant. Thus one can “see” whether a
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difference is statistically significant based on a bar graph with
error bars.

Figure 19: Sample APA-Style Bar Graph, With Error Bars
Representing the Standard Errors, Based on Re-
search by Ollendick and Colleagues

Line Graphs

Line graphs are used to present correlations between quanti-
tative variables when the independent variable has, or is orga-
nized into, a relatively small number of distinct levels. Each
point in a line graph represents the mean score on the depen-
dent variable for participants at one level of the independent
variable. Figure Figure 20 is an APA-style version of the re-
sults of Carlson and Conard. Notice that it includes error bars
representing the standard error and conforms to all the stated
guidelines.

In most cases, the information in a line graph could just as
easily be presented in a bar graph. In Figure Figure 20, for
example, one could replace each point with a bar that reaches
up to the same level and leave the error bars right where they
are. This emphasizes the fundamental similarity of the two
types of statistical relationship. Both are differences in the
average score on one variable across levels of another. The
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Figure 20: Sample APA-Style Line Graph Based on Research
by Carlson and Conard

convention followed by most researchers, however, is to use a
bar graph when the variable plotted on the x-axis is categorical
and a line graph when it is quantitative.

Scatterplots

Scatterplots are used to present relationships between quanti-
tative variables when the variable on the x-axis (typically the
independent variable) has a large number of levels. Each point
in a scatterplot represents an individual rather than the mean
for a group of individuals, and there are no lines connecting
the points. The graph in Figure Figure 21 is an APA-style
version of Figure Figure 12, which illustrates a few additional
points. First, when the variables on the x-axis and y-axis are
conceptually similar and measured on the same scale—as here,
where they are measures of the same variable on two different
occasions—this can be emphasized by making the axes the same
length. Second, when two or more individuals fall at exactly
the same point on the graph, one way this can be indicated is
by offsetting the points slightly along the x-axis. Other ways
are by displaying the number of individuals in parentheses next
to the point or by making the point larger or darker in propor-
tion to the number of individuals. Finally, the straight line
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that best fits the points in the scatterplot, which is called the
regression line, can also be included.

Figure 21: Sample APA-Style Scatterplot

Expressing Descriptive Statistics in Tables

Like graphs, tables can be used to present large amounts of
information clearly and efficiently. The same general principles
apply to tables as apply to graphs. They should add important
information to the presentation of your results, be as simple as
possible, and be interpretable on their own. Again, we focus
here on tables for an APA-style manuscript.

The most common use of tables is to present several means
and standard deviations—usually for complex research designs
with multiple independent and dependent variables. Figure
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Figure 22, for example, shows the results of a hypothetical
study similar to the one by MacDonald and Martineau (2002)
discussed in Chapter 5. (The means in Figure Figure 22 are the
means reported by MacDonald and Martineau, but the stan-
dard errors are not).

Figure 22: Sample APA-Style Table Presenting Means and
Standard Deviations

Recall that these researchers categorized participants as hav-
ing low or high self-esteem, put them into a negative or positive
mood, and measured their intentions to have unprotected sex.
Although not mentioned previously, they also measured par-
ticipants’ attitudes toward unprotected sex. Notice that the
table includes horizontal lines spanning the entire table at the
top and bottom, and just beneath the column headings. Fur-
thermore, every column has a heading—including the leftmost
column—and there are additional headings that span two or
more columns that help to organize the information and present
it more efficiently. Finally, notice that APA-style tables are
numbered consecutively starting at 1 (Table 1, Table 2, and so
on) and given a brief but clear and descriptive title.

Another common use of tables is to present correlations—
usually measured by Pearson’s r—among several variables.
This kind of table is called a correlation matrix. Figure
Figure 23 is a correlation matrix based on a study by David
McCabe and colleagues (McCabe et al. 2010). They were
interested in the relationships between working memory and
several other variables.
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Figure 23: Sample APA-Style Table (Correlation Matrix)
Based on Research by McCabe and Colleagues

We can see from the table that the correlation between working
memory and executive function, for example, was an extremely
strong .96, that the correlation between working memory and
vocabulary was a medium .27, and that all the measures except
vocabulary tend to decline with age. Notice here that only half
the table is filled in because the other half would have identical
values. For example, the Pearson’s r value in the upper right
corner (working memory and age) would be the same as the
one in the lower left corner (age and working memory). The
correlation of a variable with itself is always 1.00, so these values
are replaced by dashes to make the table easier to read.

As with graphs, precise statistical results that appear in a table
do not need to be repeated in the text. Instead, the writer can
note major trends and alert the reader to details (e.g., specific
correlations) that are of particular interest.

Key Takeaways

• In an APA-style article, simple results are most efficiently
presented in the text, while more complex results are most
efficiently presented in graphs or tables.

• APA style includes several rules for presenting numerical
results in the text. These include using words only for
numbers less than 10 that do not represent precise statis-
tical results, and rounding results to two decimal places,
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using words (e.g., “mean”) in the text and symbols (e.g.,
“M”) in parentheses.

• APA style includes several rules for presenting results in
graphs and tables. Graphs and tables should add infor-
mation rather than repeating information, be as simple
as possible, and be interpretable on their own with a de-
scriptive caption (for graphs) or a descriptive title (for
tables).

Exercises

1. Practice: In a classic study, men and women rated the im-
portance of physical attractiveness in both a short-term
mate and a long-term mate (Buss & Schmitt, 1993)3.
The means and standard deviations are as follows. Men
/ Short Term: M = 5.67, SD = 2.34; Men / Long Term:
M = 4.43, SD = 2.11; Women / Short Term: M = 5.67,
SD = 2.48; Women / Long Term: M = 4.22, SD = 1.98.
Present these results a. in writing b. in a graph c. in a
table

Conducting Your Analyses

Learning Objectives

1. Describe the steps involved in
preparing and analyzing a
typical set of raw data.

Even when you understand the statistics involved, analyzing
data can be a complicated process. It is likely that for each
of several participants, there are data for several different vari-
ables: demographics such as sex and age, one or more indepen-
dent variables, one or more dependent variables, and perhaps
a manipulation check. Furthermore, the “raw” (unanalyzed)
data might take several different forms—completed paper-and-
pencil questionnaires, computer files filled with numbers or
text, videos, or written notes—and these may have to be orga-
nized, coded, or combined in some way. There might even be
missing, incorrect, or just “suspicious” responses that must be
dealt with. In this section, we consider some practical advice
to make this process as organized and efficient as possible.
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Prepare Your Data for Analysis

Whether your raw data are on paper or in a computer file (or
both), there are a few things you should do before you begin
analyzing them. First, be sure they do not include any infor-
mation that might identify individual participants and be sure
that you have a secure location where you can store the data
and a separate secure location where you can store any consent
forms. Unless the data are highly sensitive, a locked room or
password-protected computer is usually good enough. It is also
a good idea to make photocopies or backup files of your data
and store them in yet another secure location—at least until
the project is complete. Professional researchers usually keep
a copy of their raw data and consent forms for several years
in case questions about the procedure, the data, or participant
consent arise after the project is completed.

Next, you should check your raw data to make sure that they
are complete and appear to have been accurately recorded
(whether it was participants, yourself, or a computer program
that did the recording). At this point, you might find that
there are illegible or missing responses, or obvious misunder-
standings (e.g., a response of “12” on a 1-to-10 rating scale).
You will have to decide whether such problems are severe
enough to make a participant’s data unusable. If information
about the main independent or dependent variable is missing,
or if several responses are missing or suspicious, you may have
to exclude that participant’s data from the analyses. If you do
decide to exclude any data, do not throw them away or delete
them because you or another researcher might want to see
them later. Instead, set them aside and keep notes about why
you decided to exclude them because you will need to report
this information.

Now you are ready to enter your data in a spreadsheet program
or, if it is already in a computer file, to format it for analysis.
You can use a general spreadsheet program like Microsoft Excel
or a statistical analysis program like SPSS to create your data
file. (Data files created in one program can usually be converted
to work with other programs.) The most common format is for
each row to represent a participant and for each column to rep-
resent a variable (with the variable name at the top of each
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column). A sample data file is shown in Table 12.6. The first
column contains participant identification numbers. This is
followed by columns containing demographic information (sex
and age), independent variables (mood, four self-esteem items,
and the total of the four self-esteem items), and finally depen-
dent variables (intentions and attitudes). Categorical variables
can usually be entered as category labels (e.g., “M” and “F” for
male and female) or as numbers (e.g., “0” for negative mood
and “1” for positive mood). Although category labels are of-
ten clearer, some analyses might require numbers. SPSS allows
you to enter numbers but also attach a category label to each
number.

Table 12.6 Sample Data File

If you have multiple-response measures—such the self-esteem
measure in Table 12.6—you could combine the items by hand
and then enter the total score in your spreadsheet. However,
it is much better to enter each response as a separate vari-
able in the spreadsheet—as with the self-esteem measure in
Table 12.6—and use the software to combine them (e.g., using
the “AVERAGE” function in Excel or the “Compute” func-
tion in SPSS). Not only is this approach more accurate, but it
allows you to detect and correct errors, to assess internal con-
sistency, and to analyze individual responses if you decide to
do so later.

Preliminary Analyses

Before turning to your primary research questions, there are
often several preliminary analyses to conduct. For multiple-
response measures, you should assess the internal consistency
of the measure. Statistical programs like SPSS will allow you
to compute Cronbach’s 𝛼 or Cohen’s 𝜅. If this is beyond your
comfort level, you can still compute and evaluate a split-half
correlation.

Next, you should analyze each important variable separately.
(This step is not necessary for manipulated independent vari-
ables, of course, because you as the researcher determined what
the distribution would be.) Make histograms for each one, note
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their shapes, and compute the common measures of central
tendency and variability. Be sure you understand what these
statistics mean in terms of the variables you are interested in.
For example, a distribution of self-report happiness ratings on
a 1-to-10-point scale might be unimodal and negatively skewed
with a mean of 8.25 and a standard deviation of 1.14. But
what this means is that most participants rated themselves
fairly high on the happiness scale, with a small number rating
themselves noticeably lower.

Now is the time to identify outliers, examine them more closely,
and decide what to do about them. You might discover that
what at first appears to be an outlier is the result of a response
being entered incorrectly in the data file, in which case you
only need to correct the data file and move on. Alternatively,
you might suspect that an outlier represents some other kind of
error, misunderstanding, or lack of effort by a participant. For
example, in a reaction time distribution in which most partic-
ipants took only a few seconds to respond, a participant who
took 3 minutes to respond would be an outlier. It seems likely
that this participant did not understand the task (or at least
was not paying very close attention). Also, including his or her
reaction time would have a large impact on the mean and stan-
dard deviation for the sample. In situations like this, it can be
justifiable to exclude the outlying response or participant from
the analyses. If you do this, however, you should keep notes
on which responses or participants you have excluded and why,
and apply those same criteria consistently to every response and
every participant. When you present your results, you should
indicate how many responses or participants you excluded and
the specific criteria that you used. And again, do not literally
throw away or delete the data that you choose to exclude. Just
set them aside because you or another researcher might want
to see them later.

Keep in mind that outliers do not necessarily represent an error,
misunderstanding, or lack of effort. They might represent truly
extreme responses or participants. For example, in one large
university student sample, the vast majority of participants re-
ported having had fewer than 15 sexual partners, but there
were also a few extreme scores of 60 or 70 (Brown and Sinclair
1999). Although these scores might represent errors, misunder-
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standings, or even intentional exaggerations, it is also plausible
that they represent honest and even accurate estimates. One
strategy here would be to use the median and other statistics
that are not strongly affected by the outliers. Another would
be to analyze the data both including and excluding any out-
liers. If the results are essentially the same, which they often
are, then it makes sense to leave the outliers. If the results dif-
fer depending on whether the outliers are included or excluded
them, then both analyses can be reported and the differences
between them discussed.

Answer Your Research Questions

Finally, you are ready to answer your primary research ques-
tions. If you are interested in a difference between group or
condition means, you can compute the relevant group or condi-
tion means and standard deviations, make a bar graph to dis-
play the results, and compute Cohen’s d. If you are interested
in a correlation between quantitative variables, you can make a
line graph or scatterplot (be sure to check for nonlinearity and
restriction of range) and compute Pearson’s r.

At this point, you should also explore your data for other inter-
esting results that might provide the basis for future research
(and material for the discussion section of your paper). Daryl
Bem (2003) suggests that you “examine your data from every
angle. Analyze the sexes separately. Make up new composite
indexes. If a datum suggests a new hypothesis, try to find addi-
tional evidence for it elsewhere in the data. If you see dim traces
of interesting patterns, try to reorganize the data to bring them
into bolder relief. If there are participants you don’t like, or
trials, observers, or interviewers who gave you anomalous re-
sults, drop them (temporarily). Go on a fishing expedition for
something—anything—interesting. (p. 186–187)”

It is important to be cautious, however, because complex sets
of data are likely to include “patterns” that occurred entirely
by chance. Thus results discovered while “fishing” should be
replicated in at least one new study before being presented as
new phenomena in their own right.
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Understand Your Descriptive Statistics

In the next chapter, we will consider inferential statistics—
a set of techniques for deciding whether the results for your
sample are likely to apply to the population. Although inferen-
tial statistics are important for reasons that will be explained
shortly, beginning researchers sometimes forget that their de-
scriptive statistics really tell “what happened” in their study.
For example, imagine that a treatment group of 50 participants
has a mean score of 34.32 (SD = 10.45), a control group of 50
participants has a mean score of 21.45 (SD = 9.22), and Co-
hen’s d is an extremely strong 1.31. Although conducting and
reporting inferential statistics (like a t test) would certainly be
a required part of any formal report on this study, it should
be clear from the descriptive statistics alone that the treat-
ment worked. Or imagine that a scatterplot shows an indistinct
“cloud” of points and Pearson’s r is a trivial -.02. Again, al-
though conducting and reporting inferential statistics would be
a required part of any formal report on this study, it should be
clear from the descriptive statistics alone that the variables are
essentially unrelated. The point is that you should always be
sure that you thoroughly understand your results at a descrip-
tive level first, and then move on to the inferential statistics.

Key Takeaways

• Raw data must be prepared for analysis by examining
them for possible errors, organizing them, and entering
them into a spreadsheet program.

• Preliminary analyses on any data set include checking the
reliability of measures, evaluating the effectiveness of any
manipulations, examining the distributions of individual
variables, and identifying outliers.

• Outliers that appear to be the result of an error, a misun-
derstanding, or a lack of effort can be excluded from the
analyses. The criteria for excluded responses or partici-
pants should be applied in the same way to all the data
and described when you present your results. Excluded
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data should be set aside rather than destroyed or deleted
in case they are needed later.

• Descriptive statistics tell the story of what happened in a
study. Although inferential statistics are also important,
it is essential to understand the descriptive statistics first.

Exercises

1. Discussion: What are at least two reasonable ways to deal
with each of the following outliers based on the discussion
in this chapter?

a. A participant estimating ordinary people’s heights esti-
mates one woman’s height to be “84 inches” tall.

b. In a study of memory for ordinary objects, one participant
scores 0 out of 15.

c. In response to a question about how many “close friends”
she has, one participant writes “32.”
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