
14 Inferential Statistics

The great tragedy of science - the slaying of a beau-
tiful hypothesis by an ugly fact. —Thomas Huxley

Truth in science can be defined as the working hy-
pothesis best suited to open the way to the next
better one. —Konrad Lorenz

Recall that Matthias Mehl and his colleagues, in their study of
sex differences in talkativeness, found that the women in their
sample spoke a mean of 16,215 words per day and the men a
mean of 15,669 words per day (Mehl et al. 2007). But despite
this sex difference in their sample, they concluded that there
was no evidence of a sex difference in talkativeness in the pop-
ulation. Recall also that Allen Kanner and his colleagues, in
their study of the relationship between daily hassles and symp-
toms, found a correlation of +.60 in their sample (Kanner et al.
1981). But they concluded that this finding means there is a
relationship between hassles and symptoms in the population.
This assertion raises the question of how researchers can say
whether their sample result reflects something that is true of
the population.

The answer to this question is that they use a set of techniques
called inferential statistics, which is what this chapter is about.
We focus, in particular, on null hypothesis testing, the most
common approach to inferential statistics in psychological re-
search. We begin with a conceptual overview of null hypoth-
esis testing, including its purpose and basic logic. Then we
look at several null hypothesis testing techniques for drawing
conclusions about differences between means and about corre-
lations between quantitative variables. Finally, we consider a
few other important ideas related to null hypothesis testing,
including some that can be helpful in planning new studies and
interpreting results. We also look at some long-standing criti-
cisms of null hypothesis testing and some ways of dealing with
these criticisms.
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Understanding Null Hypothesis Testing

Learning Objectives

1. Explain the purpose of null
hypothesis testing, including
the role of sampling error.

2. Describe the basic logic of
null hypothesis testing.

3. Describe the role of
relationship strength and
sample size in determining
statistical significance and
make reasonable judgments
about statistical significance
based on these two factors.

The Purpose of Null Hypothesis Testing

As we have seen, psychological research typically involves mea-
suring one or more variables for a sample and computing de-
scriptive statistics for that sample. In general, however, the
researcher’s goal is not to draw conclusions about that sample
but to draw conclusions about the population that the sample
was selected from. Thus researchers must use sample statis-
tics to draw conclusions about the corresponding values in the
population. These corresponding values in the population are
called parameters. Imagine, for example, that a researcher mea-
sures the number of depressive symptoms exhibited by each of
50 clinically depressed adults and computes the mean number
of symptoms. The researcher probably wants to use this sam-
ple statistic (the mean number of symptoms for the sample) to
draw conclusions about the corresponding population param-
eter (the mean number of symptoms for clinically depressed
adults).

Unfortunately, sample statistics are not perfect estimates of
their corresponding population parameters. This is because
there is a certain amount of random variability in any statistic
from sample to sample. The mean number of depressive symp-
toms might be 8.73 in one sample of clinically depressed adults,
6.45 in a second sample, and 9.44 in a third—even though these
samples are selected randomly from the same population. Simi-
larly, the correlation (Pearson’s r) between two variables might
be +.24 in one sample, -.04 in a second sample, and +.15 in a
third—again, even though these samples are selected randomly
from the same population. This random variability in a statis-
tic from sample to sample is called sampling error. (Note that
the term error here refers to random variability and does not
imply that anyone has made a mistake. No one “commits a
sampling error.”)

One implication of this is that when there is a statistical re-
lationship in a sample, it is not always clear that there is a
statistical relationship in the population. A small difference
between two group means in a sample might indicate that there
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is a small difference between the two group means in the popu-
lation. But it could also be that there is no difference between
the means in the population and that the difference in the sam-
ple is just a matter of sampling error. Similarly, a Pearson’s r
value of -.29 in a sample might mean that there is a negative
relationship in the population. But it could also be that there
is no relationship in the population and that the relationship
in the sample is just a matter of sampling error.

In fact, any statistical relationship in a sample can be inter-
preted in two ways:

• There is a relationship in the population, and the rela-
tionship in the sample reflects this.

• There is no relationship in the population, and the rela-
tionship in the sample reflects only sampling error.

The purpose of null hypothesis testing is simply to help re-
searchers decide between these two interpretations.

The Logic of Null Hypothesis Testing

Null hypothesis testing is a formal approach to deciding be-
tween two interpretations of a statistical relationship in a sam-
ple. One interpretation is called the null hypothesis (often sym-
bolized H0 and read as “H-naught”). This is the idea that there
is no relationship in the population and that the relationship in
the sample reflects only sampling error. Informally, the null hy-
pothesis is that the sample relationship “occurred by chance.”
The other interpretation is called the alternative hypothesis
(often symbolized as H1). This is the idea that there is a re-
lationship in the population and that the relationship in the
sample reflects this relationship in the population.

Again, every statistical relationship in a sample can be inter-
preted in either of these two ways: It might have occurred by
chance, or it might reflect a relationship in the population. So
researchers need a way to decide between them. Although there
are many specific null hypothesis testing techniques, they are
all based on the same general logic. The steps are as follows:
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• Assume for the moment that the null hypothesis is true.
There is no relationship between the variables in the pop-
ulation.

• Determine how likely the sample relationship would be if
the null hypothesis were true.

• If the sample relationship would be extremely unlikely,
then reject the null hypothesis in favor of the alternative
hypothesis. If it would not be extremely unlikely, then
retain the null hypothesis.

Following this logic, we can begin to understand why Mehl and
his colleagues concluded that there is no difference in talkative-
ness between women and men in the population. In essence,
they asked the following question: “If there were no difference
in the population, how likely is it that we would find a small dif-
ference of d = 0.06 in our sample?” Their answer to this ques-
tion was that this sample relationship would be fairly likely if
the null hypothesis were true. Therefore, they retained the null
hypothesis—concluding that there is no evidence of a sex dif-
ference in the population. We can also see why Kanner and his
colleagues concluded that there is a correlation between hassles
and symptoms in the population. They asked, “If the null hy-
pothesis were true, how likely is it that we would find a strong
correlation of +.60 in our sample?” Their answer to this ques-
tion was that this sample relationship would be fairly unlikely if
the null hypothesis were true. Therefore, they rejected the null
hypothesis in favor of the alternative hypothesis—concluding
that there is a positive correlation between these variables in
the population.

A crucial step in null hypothesis testing is finding the likeli-
hood of the sample result if the null hypothesis were true. This
probability is called the p value. A low p value means that the
sample result would be unlikely if the null hypothesis were true
and leads to the rejection of the null hypothesis. A high p value
means that the sample result would be likely if the null hypoth-
esis were true and leads to the retention of the null hypothesis.
But how low must the p value be before the sample result is
considered unlikely enough to reject the null hypothesis? In
null hypothesis testing, this criterion is called 𝛼 (alpha) and is
almost always set to .05. If there is less than a 5% chance of
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a result as extreme as the sample result if the null hypothe-
sis were true, then the null hypothesis is rejected. When this
happens, the result is said to be statistically significant. If
there is greater than a 5% chance of a result as extreme as the
sample result when the null hypothesis is true, then the null
hypothesis is retained. This does not necessarily mean that
the researcher accepts the null hypothesis as true—only that
there is not currently enough evidence to conclude that it is
true. Researchers often use the expression “fail to reject the
null hypothesis” rather than “retain the null hypothesis,” but
they never use the expression “accept the null hypothesis.”

The Misunderstood p Value

The p value is one of the most misunderstood quantities in psy-
chological research (Cohen 1994). Even professional researchers
misinterpret it, and it is not unusual for such misinterpretations
to appear in statistics textbooks!

The most common misinterpretation is that the p value is the
probability that the null hypothesis is true—that the sample
result occurred by chance. For example, a misguided researcher
might say that because the p value is .02, there is only a 2%
chance that the result is due to chance and a 98% chance that
it reflects a real relationship in the population. But this is
incorrect. The p value is really the probability of a result at
least as extreme as the sample result if the null hypothesis were
true. So a p value of .02 means that if the null hypothesis were
true, a sample result this extreme would occur only 2% of the
time.

You can avoid this misunderstanding by remembering that the
p value is not the probability that any particular hypothesis
is true or false. Instead, it is the probability of obtaining the
sample result if the null hypothesis were true.

Role of Sample Size and Relationship Strength

Recall that null hypothesis testing involves answering the ques-
tion, “If the null hypothesis were true, what is the probability of
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a sample result as extreme as this one?” In other words, “What
is the p value?” It can be helpful to see that the answer to this
question depends on just two considerations: the strength of
the relationship and the size of the sample. Specifically, the
stronger the sample relationship and the larger the sample, the
less likely the result would be if the null hypothesis were true.
That is, the lower the p value. This should make sense. Imag-
ine a study in which a sample of 500 women is compared with
a sample of 500 men in terms of some psychological character-
istic, and Cohen’s d is a strong 0.50. If there were really no sex
difference in the population, then a result this strong based on
such a large sample should seem highly unlikely. Now imagine
a similar study in which a sample of three women is compared
with a sample of three men, and Cohen’s d is a weak 0.10. If
there were no sex difference in the population, then a relation-
ship this weak based on such a small sample should seem likely.
And this is precisely why the null hypothesis would be rejected
in the first example and retained in the second.

Of course, sometimes the result can be weak and the sample
large, or the result can be strong and the sample small. In these
cases, the two considerations trade off against each other so
that a weak result can be statistically significant if the sample
is large enough and a strong relationship can be statistically sig-
nificant even if the sample is small. Figure @ref(fig:IS1) shows
roughly how relationship strength and sample size combine to
determine whether a sample result is statistically significant.
The columns of the table represent the three levels of relation-
ship strength: weak, medium, and strong. The rows represent
four sample sizes that can be considered small, medium, large,
and extra large in the context of psychological research. Thus
each cell in the table represents a combination of relationship
strength and sample size. If a cell contains the word Yes, then
this combination would be statistically significant for both Co-
hen’s d and Pearson’s r. If it contains the word No, then it
would not be statistically significant for either. There is one
cell where the decision for d and r would be different and an-
other where it might be different depending on some additional
considerations, which are discussed in Section “Some Basic Null
Hypothesis Tests”

Although Figure Figure 1 provides only a rough guideline, it
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Figure 1: How Relationship Strength and Sample Size Combine
to Determine Whether a Result Is Statistically Sig-
nificant

shows very clearly that weak relationships based on medium or
small samples are never statistically significant and that strong
relationships based on medium or larger samples are always sta-
tistically significant. If you keep this lesson in mind, you will
often know whether a result is statistically significant based on
the descriptive statistics alone. It is extremely useful to be able
to develop this kind of intuitive judgment. One reason is that it
allows you to develop expectations about how your formal null
hypothesis tests are going to come out, which in turn allows
you to detect problems in your analyses. For example, if your
sample relationship is strong and your sample is medium, then
you would expect to reject the null hypothesis. If for some rea-
son your formal null hypothesis test indicates otherwise, then
you need to double-check your computations and interpreta-
tions. A second reason is that the ability to make this kind
of intuitive judgment is an indication that you understand the
basic logic of this approach in addition to being able to do the
computations.
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Statistical Significance Versus Practical Significance

Figure Figure 1) illustrates another extremely important point.
A statistically significant result is not necessarily a strong one.
Even a very weak result can be statistically significant if it
is based on a large enough sample. This is closely related to
Janet Shibley Hyde’s argument about sex differences (Hyde
2007). The differences between women and men in mathe-
matical problem solving and leadership ability are statistically
significant. But the word significant can cause people to inter-
pret these differences as strong and important—perhaps even
important enough to influence the college courses they take or
even who they vote for. As we have seen, however, these statis-
tically significant differences are actually quite weak—perhaps
even “trivial.”

This is why it is important to distinguish between the statis-
tical significance of a result and the practical significance of
that result. Practical significance refers to the importance or
usefulness of the result in some real-world context. Many sex
differences are statistically significant—and may even be inter-
esting for purely scientific reasons—but they are not practically
significant. In clinical practice, this same concept is often re-
ferred to as “clinical significance.” For example, a study on a
new treatment for social phobia might show that it produces
a statistically significant positive effect. Yet this effect still
might not be strong enough to justify the time, effort, and
other costs of putting it into practice—especially if easier and
cheaper treatments that work almost as well already exist. Al-
though statistically significant, this result would be said to lack
practical or clinical significance.

Key Takeaways

• Null hypothesis testing is a formal approach to deciding
whether a statistical relationship in a sample reflects a
real relationship in the population or is just due to chance.

• The logic of null hypothesis testing involves assuming that
the null hypothesis is true, finding how likely the sample
result would be if this assumption were correct, and then
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making a decision. If the sample result would be unlikely
if the null hypothesis were true, then it is rejected in favor
of the alternative hypothesis. If it would not be unlikely,
then the null hypothesis is retained.

• The probability of obtaining the sample result if the null
hypothesis were true (the p value) is based on two con-
siderations: relationship strength and sample size. Rea-
sonable judgments about whether a sample relationship
is statistically significant can often be made by quickly
considering these two factors.

• Statistical significance is not the same as relationship
strength or importance. Even weak relationships can be
statistically significant if the sample size is large enough.
It is important to consider relationship strength and the
practical significance of a result in addition to its statis-
tical significance.

Exercises

1. Discussion: Imagine a study showing that people who eat
more broccoli tend to be happier. Explain for someone
who knows nothing about statistics why the researchers
would conduct a null hypothesis test.

2. Practice: Use Figure @ref(fig:IS1) to decide whether each
of the following results is statistically significant.

• The correlation between two variables is r = -.78 based
on a sample size of 137.

• The mean score on a psychological characteristic for
women is 25 (SD = 5) and the mean score for men is
24 (SD = 5). There were 12 women and 10 men in this
study.

• In a memory experiment, the mean number of items re-
called by the 40 participants in Condition A was 0.50
standard deviations greater than the mean number re-
called by the 40 participants in Condition B.

• In another memory experiment, the mean scores for par-
ticipants in Condition A and Condition B came out ex-
actly the same!
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• A student finds a correlation of r = .04 between the num-
ber of units the students in his research methods class are
taking and the students’ level of stress.

Some Basic Null Hypothesis Tests

Learning Objectives

1. Conduct and interpret
one-sample,
dependent-samples, and
independent-samples t tests.

2. Interpret the results of
one-way, repeated measures,
and factorial ANOVAs.

3. Conduct and interpret null
hypothesis tests of Pearson’s
r.

In this section, we look at several common null hypothesis test-
ing procedures. The emphasis here is on providing enough in-
formation to allow you to conduct and interpret the most ba-
sic versions. In most cases, the online statistical analysis tools
mentioned in Chapter 12 will handle the computations—as will
programs such as Microsoft Excel and SPSS.

The t Test

As we have seen throughout this book, many studies in psy-
chology focus on the difference between two means. The most
common null hypothesis test for this type of statistical rela-
tionship is the t test. In this section, we look at three types
of t tests that are used for slightly different research designs:
the one-sample t test, the dependent- samples t test, and the
independent-samples t test.

One-Sample t Test

The one-sample t test is used to compare a sample mean (M)
with a hypothetical population mean ($�0)𝑡ℎ𝑎𝑡𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑠𝑠𝑜𝑚𝑒𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑖𝑛𝑔𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑜𝑓𝑐𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛.𝑇 ℎ𝑒𝑛𝑢𝑙𝑙ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠𝑖𝑠𝑡ℎ𝑎𝑡𝑡ℎ𝑒𝑚𝑒𝑎𝑛𝑓𝑜𝑟𝑡ℎ𝑒𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛(�$)
is equal to the hypothetical population mean: 𝜇 = $�$0. The
alternative hypothesis is that the mean for the population is
different from the hypothetical population mean: 𝜇 ≠ $�$0.
To decide between these two hypotheses, we need to find
the probability of obtaining the sample mean (or one more
extreme) if the null hypothesis were true. But finding this p
value requires first computing a test statistic called t. (A test
statistic is a statistic that is computed only to help find the p
value.) The formula for t is as follows:
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𝑡 = 𝑀 − 𝑢0
( 𝑆𝐷√

𝑁 )

Again, M is the sample mean and $�$0 is the hypothetical pop-
ulation mean of interest. SD is the sample standard deviation
and N is the sample size.

The reason the t statistic (or any test statistic) is useful is that
we know how it is distributed when the null hypothesis is true.
As shown in Figure Figure 2, this distribution is unimodal and
symmetrical, and it has a mean of 0. Its precise shape depends
on a statistical concept called the degrees of freedom, which for
a one-sample t test is N - 1. (There are 24 degrees of freedom
for the distribution shown in Figure Figure 2.) The important
point is that knowing this distribution makes it possible to find
the p value for any t score. Consider, for example, a t score
of +1.50 based on a sample of 25. The probability of a t score
at least this extreme is given by the proportion of t scores in
the distribution that are at least this extreme. For now, let us
define extreme as being far from zero in either direction. Thus
the p value is the proportion of t scores that are +1.50 or above
or that are -1.50 or below—a value that turns out to be .14.

Figure 2: Distribution of t Scores (With 24 Degrees of Freedom)
When the Null Hypothesis Is True. The red vertical
lines represent the two-tailed critical values, and the
green vertical lines the one-tailed critical values when
alpha = .05.
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Figure Figure 2 Distribution of t Scores (With 24 Degrees of
Freedom) When the Null Hypothesis Is True. The red verti-
cal lines represent the two-tailed critical values, and the green
vertical lines the one-tailed critical values when 𝛼 = .05.

Fortunately, we do not have to deal directly with the distri-
bution of t scores. If we were to enter our sample data and
hypothetical mean of interest into one of the online statistical
tools in Chapter 12 or into a program like SPSS (Excel does
not have a one-sample t test function), the output would in-
clude both the t score and the p value. At this point, the rest
of the procedure is simple. If p is less than .05, we reject the
null hypothesis and conclude that the population mean differs
from the hypothetical mean of interest. If p is greater than
.05, we retain the null hypothesis and conclude that there is
not enough evidence to say that the population mean differs
from the hypothetical mean of interest. (Again, technically, we
conclude only that we do not have enough evidence to conclude
that it does differ.)

If we were to compute the t score by hand, we could use a table
like Table 13.2 to make the decision. This table does not pro-
vide actual p values. Instead, it provides the critical values of t
for different degrees of freedom (df) when 𝛼 is .05. For now, let
us focus on the two-tailed critical values in the last column of
the table. Each of these values should be interpreted as a pair
of values: one positive and one negative. For example, the two-
tailed critical values when there are 24 degrees of freedom are
+2.064 and -2.064. These are represented by the red vertical
lines in Figure Figure 2. The idea is that any t score below the
lower critical value (the left-hand red line in Figure Figure 2) is
in the lowest 2.5% of the distribution, while any t score above
the upper critical value (the right-hand red line) is in the high-
est 2.5% of the distribution. Therefore any t score beyond the
critical value in either direction is in the most extreme 5% of t
scores when the null hypothesis is true and has a p value less
than .05. Thus if the t score we compute is beyond the critical
value in either direction, then we reject the null hypothesis. If
the t score we compute is between the upper and lower critical
values, then we retain the null hypothesis.

Thus far, we have considered what is called a two-tailed test,

12



where we reject the null hypothesis if the t score for the sample
is extreme in either direction. This test makes sense when we
believe that the sample mean might differ from the hypothetical
population mean but we do not have good reason to expect the
difference to go in a particular direction. But it is also possible
to do a one-tailed test, where we reject the null hypothesis only
if the t score for the sample is extreme in one direction that we
specify before collecting the data. This test makes sense when
we have good reason to expect the sample mean will differ from
the hypothetical population mean in a particular direction.

Here is how it works. Each one-tailed critical value in Table
13.2 can again be interpreted as a pair of values: one positive
and one negative. A t score below the lower critical value is in
the lowest 5% of the distribution, and a t score above the upper
critical value is in the highest 5% of the distribution. For 24
degrees of freedom, these values are -1.711 and +1.711. (These
are represented by the green vertical lines in Figure Figure 2.)
However, for a one-tailed test, we must decide before collecting
data whether we expect the sample mean to be lower than the
hypothetical population mean, in which case we would use only
the lower critical value, or we expect the sample mean to be
greater than the hypothetical population mean, in which case
we would use only the upper critical value. Notice that we still
reject the null hypothesis when the t score for our sample is in
the most extreme 5% of the t scores we would expect if the null
hypothesis were true—so 𝛼 remains at .05. We have simply
redefined extreme to refer only to one tail of the distribution.
The advantage of the one-tailed test is that critical values are
less extreme. If the sample mean differs from the hypotheti-
cal population mean in the expected direction, then we have a
better chance of rejecting the null hypothesis. The disadvan-
tage is that if the sample mean differs from the hypothetical
population mean in the unexpected direction, then there is no
chance at all of rejecting the null hypothesis.

Example One-Sample t Test

Imagine that a health psychologist is interested in the accuracy
of university students’ estimates of the number of calories in a
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chocolate chip cookie. He shows the cookie to a sample of 10
students and asks each one to estimate the number of calories
in it. Because the actual number of calories in the cookie
is 250, this is the hypothetical population mean of interest
($�0).𝑇 ℎ𝑒𝑛𝑢𝑙𝑙ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠𝑖𝑠𝑡ℎ𝑎𝑡𝑡ℎ𝑒𝑚𝑒𝑎𝑛𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑓𝑜𝑟𝑡ℎ𝑒𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛(�$)
is 250. Because he has no real sense of whether the students
will underestimate or overestimate the number of calories, he
decides to do a two-tailed test. Now imagine further that the
participants’ actual estimates are as follows:

250, 280, 200, 150, 175, 200, 200, 220, 180, 250

The mean estimate for the sample (M) is 212.00 calories and
the standard deviation (SD) is 39.17. The health psychologist
can now compute the t score for his sample:

𝑡 = 212 − 250
(39.17√

10 )
= −3.07

If he enters the data into one of the online analysis tools or uses
SPSS, it would also tell him that the two- tailed p value for this
t score (with 10 - 1 = 9 degrees of freedom) is .013. Because
this is less than .05, the health psychologist would reject the
null hypothesis and conclude that university students tend to
underestimate the number of calories in a chocolate chip cookie.
If he computes the t score by hand, he could look at Table 13.2
and see that the critical value of t for a two-tailed test with 9
degrees of freedom is ±2.262. The fact that his t score was more
extreme than this critical value would tell him that his p value
is less than .05 and that he should reject the null hypothesis.

Finally, if this researcher had gone into this study with good
reason to expect that university students underestimate the
number of calories, then he could have done a one-tailed test
instead of a two-tailed test. The only thing this decision would
change is the critical value, which would be -1.833. This slightly
less extreme value would make it a bit easier to reject the null
hypothesis. However, if it turned out that university students
overestimate the number of calories—no matter how much they
overestimate it—the researcher would not have been able to
reject the null hypothesis.
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The Dependent-Samples t Test

The dependent-samples t test (sometimes called the paired-
samples t test) is used to compare two means for the same
sample tested at two different times or under two different con-
ditions. This comparison is appropriate for pretest-posttest
designs or within-subjects experiments. The null hypothesis is
that the means at the two times or under the two conditions
are the same in the population. The alternative hypothesis is
that they are not the same. This test can also be one-tailed if
the researcher has good reason to expect the difference goes in
a particular direction.

It helps to think of the dependent-samples t test as a
special case of the one-sample t test. However, the first
step in the dependent-samples t test is to reduce the two
scores for each participant to a single difference score by
taking the difference between them. At this point, the
dependent-samples t test becomes a one-sample t test
on the difference scores. The hypothetical population mean
($�0)𝑜𝑓𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑖𝑠0𝑏𝑒𝑐𝑎𝑢𝑠𝑒𝑡ℎ𝑖𝑠𝑖𝑠𝑤ℎ𝑎𝑡𝑡ℎ𝑒𝑚𝑒𝑎𝑛𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠𝑐𝑜𝑟𝑒𝑤𝑜𝑢𝑙𝑑𝑏𝑒𝑖𝑓𝑡ℎ𝑒𝑟𝑒𝑤𝑒𝑟𝑒𝑛𝑜𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑜𝑛𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑏𝑒𝑡𝑤𝑒𝑒𝑛𝑡ℎ𝑒𝑡𝑤𝑜𝑡𝑖𝑚𝑒𝑠𝑜𝑟𝑡𝑤𝑜𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠.𝑊𝑒𝑐𝑎𝑛𝑛𝑜𝑤𝑡ℎ𝑖𝑛𝑘𝑜𝑓𝑡ℎ𝑒𝑛𝑢𝑙𝑙ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠𝑎𝑠𝑏𝑒𝑖𝑛𝑔𝑡ℎ𝑎𝑡𝑡ℎ𝑒𝑚𝑒𝑎𝑛𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠𝑐𝑜𝑟𝑒𝑖𝑛𝑡ℎ𝑒𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑖𝑠0(�0 =
0)𝑎𝑛𝑑𝑡ℎ𝑒𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠𝑎𝑠𝑏𝑒𝑖𝑛𝑔𝑡ℎ𝑎𝑡𝑡ℎ𝑒𝑚𝑒𝑎𝑛𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠𝑐𝑜𝑟𝑒𝑖𝑛𝑡ℎ𝑒𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑖𝑠𝑛𝑜𝑡0(�$0
≠ 0).

Example Dependent-Samples t Test

Imagine that the health psychologist now knows that people
tend to underestimate the number of calories in junk food and
has developed a short training program to improve their esti-
mates. To test the effectiveness of this program, he conducts
a pretest-posttest study in which 10 participants estimate the
number of calories in a chocolate chip cookie before the train-
ing program and then again afterward. Because he expects
the program to increase the participants’ estimates, he decides
to do a one-tailed test. Now imagine further that the pretest
estimates are

230, 250, 280, 175, 150, 200, 180, 210, 220, 190

and that the posttest estimates (for the same participants in
the same order) are
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250, 260, 250, 200, 160, 200, 200, 180, 230, 240.

The difference scores, then, are as follows:

+20, +10, -30, +25, +10, 0, +20, -30, +10, +50.

Note that it does not matter whether the first set of scores is
subtracted from the second or the second from the first as long
as it is done the same way for all participants. In this exam-
ple, it makes sense to subtract the pretest estimates from the
posttest estimates so that positive difference scores mean that
the estimates went up after the training and negative difference
scores mean the estimates went down.

The mean of the difference scores is 8.50 with a standard devi-
ation of 27.27. The health psychologist can now compute the t
score for his sample as follows:

𝑡 = 8.5 − 0
(27.27√

10 )
= 1.11

If he enters the data into one of the online analysis tools or uses
Excel or SPSS, it would tell him that the one- tailed p value
for this t score (again with 10 - 1 = 9 degrees of freedom) is
.148. Because this is greater than .05, he would retain the null
hypothesis and conclude that the training program does not
increase people’s calorie estimates. If he were to compute the
t score by hand, he could look at Table 13.2 and see that the
critical value of t for a one- tailed test with 9 degrees of freedom
is +1.833. (It is positive this time because he was expecting a
positive mean difference score.) The fact that his t score was
less extreme than this critical value would tell him that his p
value is greater than .05 and that he should fail to reject the
null hypothesis.

The Independent-Samples t Test

The independent-samples t test is used to compare the means
of two separate samples (M1 and M2). The two samples might
have been tested under different conditions in a between-
subjects experiment, or they could be preexisting groups in
a correlational design (e.g., women and men, extraverts and
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introverts). The null hypothesis is that the means of the
two populations are the same: $�$1 = $�$2. The alternative
hypothesis is that they are not the same: $�$1 ≠ $�$2. Again,
the test can be one-tailed if the researcher has good reason to
expect the difference goes in a particular direction.

The t statistic here is a bit more complicated because it must
take into account two sample means, two standard deviations,
and two sample sizes. The formula is as follows:

Notice that this formula includes squared standard deviations
(the variances) that appear inside the square root symbol. Also,
lowercase n1 and n2 refer to the sample sizes in the two groups
or condition (as opposed to capital N, which generally refers to
the total sample size). The only additional thing to know here
is that there are N - 2 degrees of freedom for the independent-
samples t test.

Example Independent-Samples t test

Now the health psychologist wants to compare the calorie esti-
mates of people who regularly eat junk food with the estimates
of people who rarely eat junk food. He believes the difference
could come out in either direction so he decides to conduct a
two-tailed test. He collects data from a sample of eight partic-
ipants who eat junk food regularly and seven participants who
rarely eat junk food. The data are as follows:

Junk food eaters: 180, 220, 150, 85, 200, 170, 150, 190

Non–junk food eaters: 200, 240, 190, 175, 200, 300, 240

The mean for the junk food eaters is 220.71 with a standard
deviation of 41.23. The mean for the non–junk food eaters is
168.12 with a standard deviation of 42.66. He can now compute
his t score as follows:

𝑡 = 220.71 − 168.12
√41.282

8 + 42.662
7

= 2.42

If he enters the data into one of the online analysis tools or
uses Excel or SPSS, it would tell him that the two- tailed p
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value for this t score (with 15 - 2 = 13 degrees of freedom) is
.015. Because this p value is less than .05, the health psycholo-
gist would reject the null hypothesis and conclude that people
who eat junk food regularly make lower calorie estimates than
people who eat it rarely. If he were to compute the t score by
hand, he could look at Table 13.2 and see that the critical value
of t for a two-tailed test with 13 degrees of freedom is ±2.160.
The fact that his t score was more extreme than this critical
value would tell him that his p value is less than .05 and that
he should fail to retain the null hypothesis.

The Analysis of Variance

When there are more than two groups or condition means to be
compared, the most common null hypothesis test is the analysis
of variance (ANOVA). In this section, we look primarily at the
one-way ANOVA, which is used for between-subjects designs
with a single independent variable. We then briefly consider
some other versions of the ANOVA that are used for within-
subjects and factorial research designs.

One-Way ANOVA

The one-way ANOVA is used to compare the means of more
than two samples (M1, M2 …MG) in a between- subjects de-
sign. The null hypothesis is that all the means are equal in the
population: $�$1= $�$2 =…= 𝜇G. The alternative hypothesis is
that not all the means in the population are equal.

The test statistic for the ANOVA is called F. It is a ratio of two
estimates of the population variance based on the sample data.
One estimate of the population variance is called the mean
squares between groups (MSB) and is based on the differences
among the sample means. The other is called the mean squares
within groups (MSW) and is based on the differences among
the scores within each group. The F statistic is the ratio of the
MSB to the MSW and can therefore be expressed as follows:

𝐹 = 𝑀𝑆𝑊
𝑀𝑆𝑊
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Again, the reason that F is useful is that we know how it is dis-
tributed when the null hypothesis is true. As shown in Figure
Figure 3, this distribution is unimodal and positively skewed
with values that cluster around 1. The precise shape of the
distribution depends on both the number of groups and the
sample size, and there is a degrees of freedom value associated
with each of these. The between-groups degrees of freedom is
the number of groups minus one: dfB = (G - 1). The within-
groups degrees of freedom is the total sample size minus the
number of groups: dfW = N - G. Again, knowing the distribu-
tion of F when the null hypothesis is true allows us to find the
p value.

The online tools in Chapter 12 and statistical software such
as Excel and SPSS will compute F and find the p value. If
p is less than .05, then we reject the null hypothesis and con-
clude that there are differences among the group means in the
population.

Figure 3: Distribution of the F Ratio With 2 and 37 Degrees of
Freedom When the Null Hypothesis Is True. The red
vertical line represents the critical value when alpha
is .05

Figure Figure 3 Distribution of the F Ratio With 2 and 37
Degrees of Freedom When the Null Hypothesis Is True. The
red vertical line represents the critical value when 𝛼 is .05.

If p is greater than .05, then we retain the null hypothesis and
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conclude that there is not enough evidence to say that there
are differences. In the unlikely event that we would compute
F by hand, we can use a table of critical values like Table 13.3
“Table of Critical Values of” to make the decision. The idea is
that any F ratio greater than the critical value has a p value
of less than .05. Thus if the F ratio we compute is beyond the
critical value, then we reject the null hypothesis. If the F ratio
we compute is less than the critical value, then we retain the
null hypothesis.

Example One-Way ANOVA

Imagine that the health psychologist wants to compare the calo-
rie estimates of psychology majors, nutrition majors, and pro-
fessional dieticians. He collects the following data:

Psych majors: 200, 180, 220, 160, 150, 200, 190, 200

Nutrition majors: 190, 220, 200, 230, 160, 150, 200, 210, 195

Dieticians: 220, 250, 240, 275, 250, 230, 200, 240

The means are 187.50 (SD = 23.14), 195.00 (SD = 27.77), and
238.13 (SD = 22.35), respectively. So it appears that dieticians
made substantially more accurate estimates on average. The
researcher would almost certainly enter these data into a pro-
gram such as Excel or SPSS, which would compute F for him
and find the p value. Figure Figure 4 shows the output of the
one-way ANOVA function in Excel for these data.

Figure 4: ANOVA table output

This table is referred to as an ANOVA table. It shows that MSB
is 5,971.88, MSW is 602.23, and their ratio, F, is 9.92. The p
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value is .0009. Because this value is below .05, the researcher
would reject the null hypothesis and conclude that the mean
calorie estimates for the three groups are not the same in the
population. Notice that the ANOVA table also includes the
“sum of squares” (SS) for between groups and for within groups.
These values are computed on the way to finding MSB and
MSW but are not typically reported by the researcher. Finally,
if the researcher were to compute the F ratio by hand, he could
look at Table 13.3 and see that the critical value of F with 2
and 21 degrees of freedom is 3.467 (the same value in Figure
Figure 4 under Fcrit). The fact that his F score was more
extreme than this critical value would tell him that his p value
is less than .05 and that he should reject the null hypothesis.

ANOVA Elaborations

Post Hoc Comparisons

When we reject the null hypothesis in a one-way ANOVA, we
conclude that the group means are not all the same in the
population. But this can indicate different things. With three
groups, it can indicate that all three means are significantly dif-
ferent from each other. Or it can indicate that one of the means
is significantly different from the other two, but the other two
are not significantly different from each other. It could be, for
example, that the mean calorie estimates of psychology majors,
nutrition majors, and dieticians are all significantly different
from each other. Or it could be that the mean for dieticians is
significantly different from the means for psychology and nutri-
tion majors, but the means for psychology and nutrition majors
are not significantly different from each other. For this reason,
statistically significant one-way ANOVA results are typically
followed up with a series of post hoc comparisons of selected
pairs of group means to determine which are different from
which others.

One approach to post hoc comparisons would be to conduct
a series of independent-samples t tests comparing each group
mean to each of the other group means. But there is a problem
with this approach. In general, if we conduct a t test when
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the null hypothesis is true, we have a 5% chance of mistakenly
rejecting the null hypothesis (see Section “Additional Consider-
ations” for more on such Type I errors). If we conduct several
t tests when the null hypothesis is true, the chance of mistak-
enly rejecting at least one null hypothesis increases with each
test we conduct. Thus researchers do not usually make post
hoc comparisons using standard t tests because there is too
great a chance that they will mistakenly reject at least one null
hypothesis. Instead, they use one of several modified t test
procedures—among them the Bonferonni procedure, Fisher’s
least significant difference (LSD) test, and Tukey’s honestly sig-
nificant difference (HSD) test. The details of these approaches
are beyond the scope of this book, but it is important to un-
derstand their purpose. It is to keep the risk of mistakenly
rejecting a true null hypothesis to an acceptable level (close to
5%).

Repeated-Measures ANOVA

Recall that the one-way ANOVA is appropriate for between-
subjects designs in which the means being compared come from
separate groups of participants. It is not appropriate for within-
subjects designs in which the means being compared come from
the same participants tested under different conditions or at dif-
ferent times. This requires a slightly different approach, called
the repeated-measures ANOVA. The basics of the repeated-
measures ANOVA are the same as for the one-way ANOVA.
The main difference is that measuring the dependent variable
multiple times for each participant allows for a more refined
measure of MSW. Imagine, for example, that the dependent
variable in a study is a measure of reaction time. Some par-
ticipants will be faster or slower than others because of stable
individual differences in their nervous systems, muscles, and
other factors. In a between-subjects design, these stable in-
dividual differences would simply add to the variability within
the groups and increase the value of MSW. In a within-subjects
design, however, these stable individual differences can be mea-
sured and subtracted from the value of MSW. This lower value
of MSW means a higher value of F and a more sensitive test.
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Factorial ANOVA

When more than one independent variable is included in a fac-
torial design, the appropriate approach is the factorial ANOVA.
Again, the basics of the factorial ANOVA are the same as for
the one-way and repeated- measures ANOVAs. The main dif-
ference is that it produces an F ratio and p value for each main
effect and for each interaction. Returning to our calorie esti-
mation example, imagine that the health psychologist tests the
effect of participant major (psychology vs. nutrition) and food
type (cookie vs. hamburger) in a factorial design. A factorial
ANOVA would produce separate F ratios and p values for the
main effect of major, the main effect of food type, and the in-
teraction between major and food. Appropriate modifications
must be made depending on whether the design is between sub-
jects, within subjects, or mixed.

Testing Pearson’s r

For relationships between quantitative variables, where Pear-
son’s r is used to describe the strength of those relationships,
the appropriate null hypothesis test is a test of Pearson’s r. The
basic logic is exactly the same as for other null hypothesis tests.
In this case, the null hypothesis is that there is no relationship
in the population. We can use the Greek lowercase rho (𝜌) to
represent the relevant parameter: 𝜌 = 0. The alternative hy-
pothesis is that there is a relationship in the population: 𝜌 ≠ 0.
As with the t test, this test can be two-tailed if the researcher
has no expectation about the direction of the relationship or
one-tailed if the researcher expects the relationship to go in a
particular direction.

It is possible to use Pearson’s r for the sample to compute a
t score with N - 2 degrees of freedom and then to proceed
as for a t test. However, because of the way it is computed,
Pearson’s r can also be treated as its own test statistic. The
online statistical tools and statistical software such as Excel
and SPSS generally compute Pearson’s r and provide the p
value associated with that value of Pearson’s r. As always, if
the p value is less than .05, we reject the null hypothesis and
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conclude that there is a relationship between the variables in
the population. If the p value is greater than .05, we retain the
null hypothesis and conclude that there is not enough evidence
to say there is a relationship in the population. If we compute
Pearson’s r by hand, we can use a table like Table 13.5, which
shows the critical values of r for various samples sizes when 𝛼
is .05. A sample value of Pearson’s r that is more extreme than
the critical value is statistically significant.

Example Test of Pearson’s r

Imagine that the health psychologist is interested in the corre-
lation between people’s calorie estimates and their weight. He
has no expectation about the direction of the relationship, so
he decides to conduct a two-tailed test. He computes the cor-
relation for a sample of 22 university students and finds that
Pearson’s r is -.21. The statistical software he uses tells him
that the p value is .348. It is greater than .05, so he retains
the null hypothesis and concludes that there is no relationship
between people’s calorie estimates and their weight. If he were
to compute Pearson’s r by hand, he could look at Table 13.5
and see that the critical value for 22 - 2 = 20 degrees of freedom
is .444. The fact that Pearson’s r for the sample is less extreme
than this critical value tells him that the p value is greater than
.05 and that he should retain the null hypothesis.

Key Takeaways

• To compare two means, the most common null hypothesis
test is the t test. The one-sample t test is used for com-
paring one sample mean with a hypothetical population
mean of interest, the dependent-samples t test is used to
compare two means in a within-subjects design, and the
independent-samples t test is used to compare two means
in a between-subjects design.

• To compare more than two means, the most common null
hypothesis test is the analysis of variance (ANOVA). The
one-way ANOVA is used for between-subjects designs
with one independent variable, the repeated-measures
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ANOVA is used for within-subjects designs, and the
factorial ANOVA is used for factorial designs.

• A null hypothesis test of Pearson’s r is used to compare
a sample value of Pearson’s r with a hypothetical popu-
lation value of 0.

Exercises

1. Practice: Use one of the online tools, Excel, or SPSS
to reproduce the one-sample t test, dependent-samples t
test, independent-samples t test, and one-way ANOVA
for the four sets of calorie estimation data presented in
this section.

2. Practice: A sample of 25 university students rated their
friendliness on a scale of 1 (Much Lower Than Average)
to 7 (Much Higher Than Average). Their mean rating
was 5.30 with a standard deviation of 1.50. Conduct a
one-sample t test comparing their mean rating with a
hypothetical mean rating of 4 (Average). The question
is whether university students have a tendency to rate
themselves as friendlier than average.

3. Practice: Decide whether each of the following Pearson’s
r values is statistically significant for both a one-tailed
and a two-tailed test.

• The correlation between height and IQ is +.13 in a sample
of 35.

• For a sample of 88 university students, the correlation
between how disgusted they felt and the harshness of their
moral judgments was +.23.

• The correlation between the number of daily hassles and
positive mood is -.43 for a sample of 30 middle-aged
adults.

Additional Considerations

Learning Objectives

1. Define Type I and Type II
errors, explain why they
occur, and identify some steps
that can be taken to minimize
their likelihood.

2. Define statistical power,
explain its role in the
planning of new studies, and
use online tools to compute
the statistical power of simple
research designs.

3. List some criticisms of
conventional null hypothesis
testing, along with some ways
of dealing with these
criticisms.

In this section, we consider a few other issues related to
null hypothesis testing, including some that are useful in
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planning studies and interpreting results. We even consider
some long-standing criticisms of null hypothesis testing, along
with some steps that researchers in psychology have taken to
address them.

Errors in Null Hypothesis Testing

In null hypothesis testing, the researcher tries to draw a rea-
sonable conclusion about the population based on the sample.
Unfortunately, this conclusion is not guaranteed to be correct.
This discrepancy is illustrated by Figure Figure 5. The rows
of this table represent the two possible decisions that we can
make in null hypothesis testing: to reject or retain the null
hypothesis. The columns represent the two possible states of
the world: The null hypothesis is false or it is true. The four
cells of the table, then, represent the four distinct outcomes of
a null hypothesis test. Two of the outcomes—rejecting the null
hypothesis when it is false and retaining it when it is true—are
correct decisions. The other two—rejecting the null hypothesis
when it is true and retaining it when it is false—are errors.

Figure 5: Two Types of Correct Decisions and Two Types of
Errors in Null Hypothesis Testing

Rejecting the null hypothesis when it is true is called a Type I
error. This error means that we have concluded that there is a
relationship in the population when in fact there is not. Type
I errors occur because even when there is no relationship in the
population, sampling error alone will occasionally produce an
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extreme result. In fact, when the null hypothesis is true and 𝛼
is .05, we will mistakenly reject the null hypothesis 5% of the
time. (This possibility is why 𝛼 is sometimes referred to as the
“Type I error rate.”) Retaining the null hypothesis when it is
false is called a Type II error. This error means that we have
concluded that there is no relationship in the population when
in fact there is. In practice, Type II errors occur primarily
because the research design lacks adequate statistical power to
detect the relationship (e.g., the sample is too small). We will
have more to say about statistical power shortly.

In principle, it is possible to reduce the chance of a Type I
error by setting 𝛼 to something less than .05. Setting it to .01,
for example, would mean that if the null hypothesis is true,
then there is only a 1% chance of mistakenly rejecting it. But
making it harder to reject true null hypotheses also makes it
harder to reject false ones and therefore increases the chance of
a Type II error. Similarly, it is possible to reduce the chance
of a Type II error by setting 𝛼 to something greater than .05
(e.g., .10). But making it easier to reject false null hypotheses
also makes it easier to reject true ones and therefore increases
the chance of a Type I error. This provides some insight into
why the convention is to set 𝛼 to .05. There is some agreement
among researchers that level of 𝛼 keeps the rates of both Type
I and Type II errors at acceptable levels.

The possibility of committing Type I and Type II errors has
several important implications for interpreting the results of our
own and others’ research. One is that we should be cautious
about interpreting the results of any individual study because
there is a chance that it reflects a Type I or Type II error. This
possibility is why researchers consider it important to replicate
their studies. Each time researchers replicate a study and find
a similar result, they rightly become more confident that the
result represents a real phenomenon and not just a Type I or
Type II error.

Another issue related to Type I errors is the so-called file drawer
problem (Rosenthal 1979). The idea is that when researchers
obtain statistically significant results, they tend to submit them
for publication, and journal editors and reviewers tend to ac-
cept them. But when researchers obtain non-significant results,
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they tend not to submit them for publication, or if they do
submit them, journal editors and reviewers tend not to accept
them. Researchers end up putting these non-significant results
away in a file drawer (or nowadays, in a folder on their hard
drive). One effect of this tendency is that the published liter-
ature probably contains a higher proportion of Type I errors
than we might expect on the basis of statistical considerations
alone. Even when there is a relationship between two variables
in the population, the published research literature is likely to
overstate the strength of that relationship. Imagine, for exam-
ple, that the relationship between two variables in the popula-
tion is positive but weak (e.g., 𝜌 = +.10). If several researchers
conduct studies on this relationship, sampling error is likely to
produce results ranging from weak negative relationships (e.g.,
r = -.10) to moderately strong positive ones (e.g., r = +.40).
But because of the file drawer problem, it is likely that only
those studies producing moderate to strong positive relation-
ships are published. The result is that the effect reported in
the published literature tends to be stronger than it really is in
the population.

Figure 6: An Example of How Type I and Type II Errors Could
Play out in Pregnancy Exams.

The file drawer problem is a difficult one because it is a product
of the way scientific research has traditionally been conducted
and published. One solution might be for journal editors and
reviewers to evaluate research submitted for publication with-
out knowing the results of that research. The idea is that if the
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research question is judged to be interesting and the method
judged to be sound, then a non-significant result should be just
as important and worthy of publication as a significant one.
Short of such a radical change in how research is evaluated for
publication, researchers can still take pains to keep their non-
significant results and share them as widely as possible (e.g., at
professional conferences). Many scientific disciplines now have
journals devoted to publishing non-significant results. In psy-
chology, for example, there is the Journal of Articles in Support
of the Null Hypothesis (http://www.jasnh.com).

In 2014, Uri Simonsohn, Leif Nelson, and Joseph Simmons pub-
lished a leveling article at the field of psychology accusing re-
searchers of creating too many Type I errors in psychology
by chasing a significant p value through what they called p-
hacking (Simonsohn, Nelson, and Simmons 2014). Researchers
are trained in many sophisticated statistical techniques for an-
alyzing data that will yield a desirable p value. They propose
using a p-curve to determine whether the data set with a cer-
tain p value is credible or not. They also propose this p-curve
as a way to unlock the file drawer because we can only un-
derstand the finding if we know the true effect size and the
likelihood of a result was found after multiple attempts at not
finding a result. Their groundbreaking paper contributed to a
major conversation in the field about publishing standards and
the reliability of our results.

Statistical Power

The statistical power of a research design is the probability of
rejecting the null hypothesis given the sample size and expected
relationship strength. For example, the statistical power of a
study with 50 participants and an expected Pearson’s r of +.30
in the population is .59. That is, there is a 59% chance of re-
jecting the null hypothesis if indeed the population correlation
is +.30. Statistical power is the complement of the probability
of committing a Type II error. So in this example, the prob-
ability of committing a Type II error would be 1 - .59 = .41.
Clearly, researchers should be interested in the power of their
research designs if they want to avoid making Type II errors.
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In particular, they should make sure their research design has
adequate power before collecting data. A common guideline
is that a power of .80 is adequate. This guideline means that
there is an 80% chance of rejecting the null hypothesis for the
expected relationship strength.

The topic of how to compute power for various research designs
and null hypothesis tests is beyond the scope of this book. How-
ever, there are online tools that allow you to do this by entering
your sample size, expected relationship strength, and 𝛼 level
for various hypothesis tests (see “Computing Power Online”).
In addition, Figure Figure 7 shows the sample size needed to
achieve a power of .80 for weak, medium, and strong relation-
ships for a two- tailed independent-samples t test and for a
two-tailed test of Pearson’s r. Notice that this table ampli-
fies the point made earlier about relationship strength, sample
size, and statistical significance. In particular, weak relation-
ships require very large samples to provide adequate statistical
power.

Figure 7: Sample Sizes Needed to Achieve Statistical Power of
.80 for Different Expected Relationship Strengths for
an Independent- Samples t Test and a Test of Pear-
son’s r Null Hypothesis Test

What should you do if you discover that your research design
does not have adequate power? Imagine, for example, that you
are conducting a between-subjects experiment with 20 partici-
pants in each of two conditions and that you expect a medium
difference (d = .50) in the population. The statistical power
of this design is only .34. That is, even if there is a medium
difference in the population, there is only about a one in three
chance of rejecting the null hypothesis and about a two in three
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chance of committing a Type II error.

Given the time and effort involved in conducting the study,
this probably seems like an unacceptably low chance of reject-
ing the null hypothesis and an unacceptably high chance of
committing a Type II error. Given that statistical power de-
pends primarily on relationship strength and sample size, there
are essentially two steps you can take to increase statistical
power: increase the strength of the relationship or increase the
sample size. Increasing the strength of the relationship can
sometimes be accomplished by using a stronger manipulation
or by more carefully controlling extraneous variables to reduce
the amount of noise in the data (e.g., by using a within- sub-
jects design rather than a between-subjects design). The usual
strategy, however, is to increase the sample size. For any ex-
pected relationship strength, there will always be some sample
large enough to achieve adequate power.

Computing Power Online

The following links are to tools that allow you to compute sta-
tistical power for various research designs and null hypothesis
tests by entering information about the expected relationship
strength, the sample size, and the 𝛼 level. They also allow you
to compute the sample size necessary to achieve your desired
level of power (e.g., .80). The first is an online tool. The second
is a free downloadable program called G*Power.

• Russ Lenth’s Power and Sample Size Page: http://www.
stat.uiowa.edu/~rlenth/Power/index.html

• G*Power: http://www.gpower.hhu.de

Problems With Null Hypothesis Testing, and Some
Solutions

Again, null hypothesis testing is the most common approach
to inferential statistics in psychology. It is not without its crit-
ics, however. In fact, in recent years the criticisms have become
so prominent that the American Psychological Association con-
vened a task force to make recommendations about how to deal
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with them (Wilkinson 1999). In this section, we consider some
of the criticisms and some of the recommendations.

Criticisms of Null Hypothesis Testing

Some criticisms of null hypothesis testing focus on researchers’
misunderstanding of it. We have already seen, for example,
that the p value is widely misinterpreted as the probability that
the null hypothesis is true. (Recall that it is really the prob-
ability of the sample result if the null hypothesis were true.)
A closely related misinterpretation is that 1 - p is the prob-
ability of replicating a statistically significant result. In one
study, 60% of a sample of professional researchers thought that
a p value of .01—for an independent-samples t test with 20
participants in each sample—meant there was a 99% chance of
replicating the statistically significant result (Oaks 1986). Our
earlier discussion of power should make it clear that this figure
is far too optimistic. As Table 13.5 shows, even if there were
a large difference between means in the population, it would
require 26 participants per sample to achieve a power of .80.
And the program G*Power shows that it would require 59 par-
ticipants per sample to achieve a power of .99.

Another set of criticisms focuses on the logic of null hypothesis
testing. To many, the strict convention of rejecting the null
hypothesis when p is less than .05 and retaining it when p is
greater than .05 makes little sense. This criticism does not
have to do with the specific value of .05 but with the idea that
there should be any rigid dividing line between results that are
considered significant and results that are not. Imagine two
studies on the same statistical relationship with similar sample
sizes. One has a p value of .04 and the other a p value of
.06. Although the two studies have produced essentially the
same result, the former is likely to be considered interesting
and worthy of publication and the latter simply not significant.
This convention is likely to prevent good research from being
published and to contribute to the file drawer problem.

Yet another set of criticisms focus on the idea that null hypoth-
esis testing—even when understood and carried out correctly—
is simply not very informative. Recall that the null hypothesis
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is that there is no relationship between variables in the pop-
ulation (e.g., Cohen’s d or Pearson’s r is precisely 0). So to
reject the null hypothesis is simply to say that there is some
nonzero relationship in the population. But this assertion is
not really saying very much. Imagine if chemistry could tell
us only that there is some relationship between the tempera-
ture of a gas and its volume—as opposed to providing a precise
equation to describe that relationship. Some critics even argue
that the relationship between two variables in the population
is never precisely 0 if it is carried out to enough decimal places.
In other words, the null hypothesis is never literally true. So
rejecting it does not tell us anything we did not already know!

To be fair, many researchers have come to the defense of null hy-
pothesis testing. One of them, Robert Abelson, has argued that
when it is correctly understood and carried out, null hypothesis
testing does serve an important purpose (Abelson 2012). Espe-
cially when dealing with new phenomena, it gives researchers a
principled way to convince others that their results should not
be dismissed as mere chance occurrences.

The end of p-values?

In 2015, the editors of Basic and Applied Social Psychology
announced6 a ban on the use of null hypothesis testing and
related statistical procedures. Authors are welcome to submit
papers with p-values, but the editors will remove them before
publication. Although they did not propose a better statistical
test to replace null hypothesis testing, the editors emphasized
the importance of descriptive statistics and effect sizes. This
rejection of the “gold standard” of statistical validity has con-
tinued the conversation in psychology of questioning exactly
what we know.

What to Do?

Even those who defend null hypothesis testing recognize many
of the problems with it. But what should be done? Some sug-
gestions now appear in the Publication Manual. One is that
each null hypothesis test should be accompanied by an effect
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size measure such as Cohen’s d or Pearson’s r. By doing so,
the researcher provides an estimate of how strong the relation-
ship in the population is—not just whether there is one or not.
(Remember that the p value cannot substitute as a measure
of relationship strength because it also depends on the sample
size. Even a very weak result can be statistically significant if
the sample is large enough.)

Another suggestion is to use confidence intervals rather than
null hypothesis tests. A confidence interval around a statistic
is a range of values that is computed in such a way that some
percentage of the time (usually 95%) the population param-
eter will lie within that range. For example, a sample of 20
university students might have a mean calorie estimate for a
chocolate chip cookie of 200 with a 95% confidence interval of
160 to 240. In other words, there is a very good chance that the
mean calorie estimate for the population of university students
lies between 160 and 240. Advocates of confidence intervals ar-
gue that they are much easier to interpret than null hypothesis
tests. Another advantage of confidence intervals is that they
provide the information necessary to do null hypothesis tests
should anyone want to. In this example, the sample mean of
200 is significantly different at the .05 level from any hypothet-
ical population mean that lies outside the confidence interval.
So the confidence interval of 160 to 240 tells us that the sample
mean is statistically significantly different from a hypothetical
population mean of 250.

Finally, there are more radical solutions to the problems of null
hypothesis testing that involve using very different approaches
to inferential statistics. Bayesian statistics, for example, is an
approach in which the researcher specifies the probability that
the null hypothesis and any important alternative hypotheses
are true before conducting the study, conducts the study, and
then updates the probabilities based on the data. It is too early
to say whether this approach will become common in psycho-
logical research. For now, null hypothesis testing—supported
by effect size measures and confidence intervals—remains the
dominant approach.
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Key Takeaways

• The decision to reject or retain the null hypothesis is not
guaranteed to be correct. A Type I error occurs when
one rejects the null hypothesis when it is true. A Type II
error occurs when one fails to reject the null hypothesis
when it is false.

• The statistical power of a research design is the proba-
bility of rejecting the null hypothesis given the expected
relationship strength in the population and the sample
size. Researchers should make sure that their studies have
adequate statistical power before conducting them.

• Null hypothesis testing has been criticized on the grounds
that researchers misunderstand it, that it is illogical, and
that it is uninformative. Others argue that it serves an
important purpose—especially when used with effect size
measures, confidence intervals, and other techniques. It
remains the dominant approach to inferential statistics in
psychology.

Exercises

1. Discussion: A researcher compares the effectiveness of
two forms of psychotherapy for social phobia using an
independent-samples t test. a. Explain what it would
mean for the researcher to commit a Type I error. b.
Explain what it would mean for the researcher to commit
a Type II error.

2. Discussion: Imagine that you conduct a t test and the
p value is .02. How could you explain what this p value
means to someone who is not already familiar with null
hypothesis testing? Be sure to avoid the common misin-
terpretations of the p value.

3. For additional practice with Type I and Type II errors,
try these problems from Carnegie Mellon’s Open Learning
Initiative.

35



From the “Replicability Crisis” to Open Science
Practices

Learning Objectives

1. Describe what is meant by
the “replicability crisis” in
psychology.

2. Describe some questionable
research practices.

3. Identify some ways in which
scientific rigor may be
increased.

4. Understand the importance of
openness in psychological
science.

At the start of this book we discussed the “Many Labs Repli-
cation Project,” which failed to replicate the original finding
by Simone Schnall and her colleagues that washing one’s
hands leads people to view moral transgressions as less wrong
(Schnall, Benton, & Harvey, 2008)1. Although this project
is a good illustration of the collaborative and self-correcting
nature of science, it also represents one specific response to
psychology’s recent “replicability crisis,” a phrase that refers
to the inability of researchers to replicate earlier research find-
ings. Consider for example the results of the Reproducibility
Project, which involved over 270 psychologists around the
world coordinating their efforts to test the reliability of 100
previously published psychological experiments (Aarts et al.,
2015). Although 97 of the original 100 studies had found
statistically significant effects, only 36 of the replications did!
Moreover, even the effect sizes of the replications were, on
average, half of those found in the original studies (see Figure
13.5). Of course, a failure to replicate a result by itself does
not necessarily discredit the original study as differences in the
statistical power, populations sampled, and procedures used,
or even the effects of moderating variables could explain the
different results (Yong, 2015).

Although many believe that the failure to replicate research
results is an expected characteristic of cumulative scientific
progress, others have interpreted this situation as evidence of
systematic problems with conventional scholarship in psychol-
ogy, including a publication bias that favors the discovery and
publication of counter-intuitive but statistically significant find-
ings instead of the duller (but incredibly vital) process of repli-
cating previous findings to test their robustness (Aschwanden,
2015; Frank, 2015; Pashler & Harris, 2012; Scherer, 2015).

Worse still is the suggestion that the low replicability of many
studies is evidence of the widespread use of questionable re-
search practices by psychological researchers. These may in-
clude:

1. The selective deletion of outliers in order to influence
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(usually by artificially inflating) statistical relationships
among the measured variables.

2. The selective reporting of results, cherry-picking only
those findings that support one’s hypotheses.

3. Mining the data without an a priori hypothesis, only to
claim that a statistically significant result had been orig-
inally predicted, a practice referred to as “HARKing” or
hypothesizing after the results are known (Kerr 1998).

4. A practice colloquially known as “p-hacking” (briefly dis-
cussed in the previous section), in which a researcher
might perform inferential statistical calculations to see if
a result was significant before deciding whether to recruit
additional participants and collect more data (Head et al.
2015). As you have learned, the probability of finding a
statistically significant result is influenced by the number
of participants in the study.

5. Outright fabrication of data (as in the case of Diederik
Stapel, described at the start of Chapter 3), although this
would be a case of fraud rather than a “research practice.”

It is important to shed light on these questionable research
practices to ensure that current and future researchers (such as
yourself) understand the damage they wreak to the integrity
and reputation of our discipline (see, for example, the “Repli-
cation Index,” a statistical “doping test” developed by Ulrich
Schimmack in 2014 for estimating the replicability of studies,
journals, and even specific researchers). However, in addition
to highlighting what not to do, this so-called “crisis” has also
highlighted the importance of enhancing scientific rigor by:

1. Designing and conducting studies that have sufficient sta-
tistical power, in order to increase the reliability of find-
ings.

2. Publishing both null and significant findings (thereby
counteracting the publication bias and reducing the file
drawer problem).
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3. Describing one’s research designs in sufficient detail to
enable other researchers to replicate your study using an
identical or at least very similar procedure.

4. Conducting high-quality replications and publishing these
results (Brandt et al. 2014).

One particularly promising response to the replicability crisis
has been the emergence of open science practices that increase
the transparency and openness of the scientific enterprise. For
example, Psychological Science (the flagship journal of the As-
sociation for Psychological Science) and other journals now is-
sue digital badges to researchers who pre-registered their hy-
potheses and data analysis plans, openly shared their research
materials with other researchers (e.g., to enable attempts at
replication), or made available their raw data with other re-
searchers (see Figure 13.6).

These initiatives, which have been spearheaded by the Center
for Open Science, have led to the development of “Transparency
and Openness Promotion guidelines” (see Table 13.7) that have
since been formally adopted by more than 500 journals and
50 organizations, a list that grows each week. When you add
to this the requirements recently imposed by federal funding
agencies in Canada (the Tri-Council) and the United States
(National Science Foundation) concerning the publication of
publicly-funded research in open access journals, it certainly
appears that the future of science and psychology will be one
that embraces greater “openness” (Nosek et al. 2015).

Key Takeaways

• In recent years psychology has grappled with a failure to
replicate research findings. Some have interpreted this as
a normal aspect of science but others have suggested that
this is highlights problems stemming from questionable
research practices.

• One response to this “replicability crisis” has been the
emergence of open science practices, which increase the
transparency and openness of the research process. These
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open practices include digital badges to encourage pre-
registration of hypotheses and the sharing of raw data
and research materials.

Exercises

1. Discussion: What do you think are some of the key ben-
efits of the adoption of open science practices such as
pre-registration and the sharing of raw data and research
materials? Can you identify any drawbacks of these prac-
tices?

2. Practice: Read the online article “Science isn’t broken:
It’s just a hell of a lot harder than we give it credit for”
and use the interactive tool entitled “Hack your way to
scientific glory” in order to better understand the data
malpractice of “p-hacking.”
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