Skip to contents

All functions

add_bars_to_copy_df()
Add Bars to Copy of Dataframe
add_control_change()
Add control_change message to df
add_meta_end_of_track()
Add end_of_track message to df
add_meta_tempo()
Add set_tempo message to df
add_meta_time_sig()
Add time_signature message to df
add_meta_track_name()
Add track name message to df
add_midi_message()
Add a midi message to a midi_df
add_note_off()
Add note_off message to df
add_note_on()
Add note_on message to df
add_program_change()
Add program_change message to df
bresenham_euclidean()
Bresenham's algorithm for Euclidean rhythm generation
copy_and_extend_midi_df()
copy_and_extend_midi_df
copy_midi_df_track()
copy single track df within midi_df
create_empty_midi_df()
Initialize a midi_df tibble with column headers
create_midi_matrix()
create_midi_matrix function
feature_vector_to_matrix()
Convert feature vector to matrix
get_feature_probs()
Get Feature Probabilities
get_mean_note_density()
Compute the mean note density of a midi matrix
get_midi_meta_df()
get meta messages from a track_df
make_metric_tibble()
Create a dataframe with helpful timing metrics from a midi_df
mangle_note_wiggler()
Randomly offset individual notes by a vector of semitones
mangle_positive_timing()
Mangle Positive Timing Function
mangle_transpose()
Transpose MIDI Data
matrix_to_midi_time()
Convert a matrix representation of a MIDI sequence back to MIDI timings
matrix_to_midi_track()
matrix_to_midi_track function
midi_df_to_matrix()
Convert MIDI Data Frame to piano roll Matrix
midi_notes()
Create a tibble of midi note information
midi_to_object()
midi_to_object Function
new_features_from_probs()
Create New Features Based on Probabilities
reshape_piano_roll()
Reshape Piano Roll Matrix
set_midi_tempo_meta()
set midi tempo in a meta messages df
set_midi_tempo_midi_df()
set midi tempo in a midi_df
split_meta_df()
Split a meta_df into list of top and end messages